UT st o | “® @ Exact or Heuristic Exponential-Time Algorithms

POLYTEGH with applications to scheduling

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

V T'kindt
tkindt@univ-tours.fr, Université Francois-Rabelais, CNRS, Tours, France

June 2019

T'kindt Exponential Algorithms with applications to scheduling 1/90



UT st o | ||® Exact or Heuristic Exponential-Time Algorithms

with applications to scheduling

POLYTECH

® |ntroduction

® Exact Exponential-Time Algorithms
» Technique 1 : Dynamic Programming
» Technique 2 : Branch-and-Reduce
» Technique 3 : Sort&Search

# Heuristic Exponential-Time Algorithms

® Conclusions

T'kindt Exponential Algorithms with applications to scheduling



POLYTEGH with applications to scheduling

UT st o | “® @ Exact or Heuristic Exponential-Time Algorithms

® Introduction

T'kindt Exponential Algorithms with applications to scheduling 3/90



UT st o | “® @ Exact or Heuristic Exponential-Time Algorithms

POLYTEGH with applications to scheduling

» What is called an “exponential algorithm”?....

T'kindt Exponential Algorithms with applications to scheduling 4 /90



UT st o | “® Exact or Heuristic Exponential-Time Algorithms

POLYTECH

with applications to scheduling

» What is called an “exponential algorithm”?....

» For a NP-hard problem, an exact or heuristic algorithm for
which the worst-case (time/space) complexity can be
computed,

T'kindt Exponential Algorithms with applications to scheduling 4 /90



UT st o | ||® A Exact or Heuristic Exponential-Time Algorithms

POLYTECH

with applications to scheduling

» What is called an “exponential algorithm”?....

» For a NP-hard problem, an exact or heuristic algorithm for
which the worst-case (time/space) complexity can be
computed,

» An Exact Exponential-Time Algorithm (E-ETA) provides an
optimal solution to the problem,

T'kindt Exponential Algorithms with applications to scheduling 4 /90



UT st o | ||® @ Exact or Heuristic Exponential-Time Algorithms

POLYTECH

with applications to scheduling

» What is called an “exponential algorithm”?....

» For a NP-hard problem, an exact or heuristic algorithm for
which the worst-case (time/space) complexity can be
computed,

» An Exact Exponential-Time Algorithm (E-ETA) provides an
optimal solution to the problem,

» A Heuristic Exponential-Time Algorithm (H-ETA) provides a
solution which worst-case quality can be bounded
(approximation algorithm).
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» About E-ETA :

« An E-ETA is not intended to be good in practice (E-ETA vs
Branch-and-Bound algorithms),

« What happen in the worst-case is the matter of E-ETA,

«» Find “theoretical” algorithms with worst-case time/space upper
bounds as low as possible...
The MIS problem has been shown to be solvable O* (27) in 1977, O*(1.381™) in 1999,
0*(1.2201™) in 2009, ...

NB : O (ezp(n)) = O(poly(n)ezp(n))
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» About E-ETA :

« An E-ETA is not intended to be good in practice (E-ETA vs
Branch-and-Bound algorithms),

« What happen in the worst-case is the matter of E-ETA,

«» Find “theoretical” algorithms with worst-case time/space upper
bounds as low as possible...
The MIS problem has been shown to be solvable O* (27) in 1977, O*(1.381™) in 1999,
0*(1.2201™) in 2009, ...
NB : 0% (ezp(n)) = O(poly(n)eap(n))

« In the future, E-ETA will start to beat in practice heuristics ?
1.2201" is smaller than n? for n < 90,

1.1" is faster than n? for n < 230,
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» About E-ETA :

« An E-ETA is not intended to be good in practice (E-ETA vs
Branch-and-Bound algorithms),

» What happen in the worst-case is the matter of E-ETA,

«» Find “theoretical” algorithms with worst-case time/space upper
bounds as low as possible...
The MIS problem has been shown to be solvable O* (27) in 1977, O*(1.381™) in 1999,
0*(1.2201™) in 2009, ...
NB : 0% (ezp(n)) = O(poly(n)eap(n))

« In the future, E-ETA will start to beat in practice heuristics ?
1.2201" is smaller than n? for n < 90,
1.1" is faster than n? for n < 230,

« Provide a quantitative information on the difficulty of a
NP-hard problem,
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» About H-ETA :

[0] N. Bourgeois, B. Escoffier, V. Paschos (2011). Approximation of Max Independent Set, Min Vertex Cover and

related problems by moderately exponential algorithms, Discrete Applied Mathematics, 159(17) : 1954-1970
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» About H-ETA :

« For a given heuristic H we compute a worst-case ratio p :
H

A
WSP,

[0] N. Bourgeois, B. Escoffier, V. Paschos (2011). Approximation of Max Independent Set, Min Vertex Cover and

related problems by moderately exponential algorithms, Discrete Applied Mathematics, 159(17) : 1954-1970
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» About H-ETA :

« For a given heuristic H we compute a worst-case ratio p :
AP p
Zopt ~ [h

» H-ETA are relevant for problems that cannot be approximated
(bounded ratio) in polynomial time,
The MIS problem cannot be approximated in polynomial time within ratio n€= 1 ve>0
(Zuckerman, 2006).
The MIS problem can be approximated in O* (vP™) time within ratio p < 1 by using an E-ETA

running in O™ (y™) time ([0]).

[0] N. Bourgeois, B. Escoffier, V. Paschos (2011). Approximation of Max Independent Set, Min Vertex Cover and

related problems by moderately exponential algorithms, Discrete Applied Mathematics, 159(17) : 1954-1970
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» About H-ETA :

« For a given heuristic H we compute a worst-case ratio p :
AP p
Z0t = [

» H-ETA are relevant for problems that cannot be approximated
(bounded ratio) in polynomial time,
The MIS problem cannot be approximated in polynomial time within ratio n€= 1 ve>0
(Zuckerman, 2006).
The MIS problem can be approximated in O* (v#™) time within ratio p < 1 by using an E-ETA
running in O* (v™) time ([0]).

« Pay for an exponential time to get a guarantee on the quality
(but pay less than to solve to optimality),

[0] N. Bourgeois, B. Escoffier, V. Paschos (2011). Approximation of Max Independent Set, Min Vertex Cover and

related problems by moderately exponential algorithms, Discrete Applied Mathematics, 159(17) : 1954-1970
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be applied successfully applied to scheduling problems,
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» In this talk...

» We first tackle E-ETA providing several techniques that can
be applied successfully applied to scheduling problems,

» Next, we tackle H-ETA and first applications to scheduling
problems.
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#® Exact Exponential-Time Algorithms
» Technique 1 : Dynamic Programming
» Technique 2 : Branch-and-Reduce
» Technique 3 : Sort&Search
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* A lot of works on graph or decision problems (70's, 2000-),
« 3-SAT : 0*(1.3211™) time (lwama et al., 2010),
» Hamiltonian circuit : O*(1.657™) time (Bjorklund, 2010),
« MIS : 0*(1.2132™) time (Kneis et al, 2009),

» List coloring : O*(2™) time (Bjorklund and Husfeldt, 2006)
and (Koivisto, 2006),
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* A lot of works on graph or decision problems (70's, 2000-),
« 3-SAT : 0*(1.3211™) time (lwama et al., 2010),

» Hamiltonian circuit : O*(1.657™) time (Bjorklund, 2010),
« MIS : 0*(1.2132™) time (Kneis et al, 2009),

» List coloring : O*(2™) time (Bjorklund and Husfeldt, 2006)
and (Koivisto, 2006),

» A growing interest since ~ 2005 in scheduling literature,
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» What about scheduling problems (single machine) ?

Problem brute force wctc wcsc Reference
1|dec|fmaz O™ (n!) O™ (2™) exp 1
1dec| >, fi O™ (n!) O™ (2™) exp 1
1|prec| Y, C; O* (n!) o ((2—e™) exp 2
1|prec| >, w; C; O* (n!) o0*(2™) exp 3
1d;| >, wi Us O*(n!) o*(2™) exp 3
0*(1.4142™) ) 4]

1ld;| >, T O™ (n!) O™ (2™) exp [3] & [4]
1di| Do, wi Ty O™ (n!) O0*(2™) poly 5

1]r;, prec] >, w; C; O™ (n!) O™ (3™) exp 3] & [4]

[1] F. Fomin, D. Kratsch (2010). Exact Exponential Algorithms, Springer.

[2] M. Cygan, M. Philipczuk, M. Philipczuk, J. Wojtaszczyk (2011). Scheduling partially ordered jobs faster than
2™, Proceedings of 19th Annual European Symposium (ESA 2011), Lecture Notes in Computer Science, vol. 6942,
pp. 299-310.

[3] G. Woeginger (2003). Exact algorithms for NP-hard problems : A survey, in M. Junger, G. Reinelt, G. Rinaldi
(Eds) : Combinatorial Optimization — Eureka | shrink !, Springer, LNCS 2570.

[4] C. Lenté, M. Liedloff, A. Soukhal, V.T'kindt (2013). On an extension of the Sort & Search method with
application to scheduling theory, Theoretical Computer Science, 511, pp 13-22.

[5] M. Garraffa, L. Shang, F. Della Croce, V. T'Kindt (2018). An exact exponential branch-and-merge algorithm for

the single machine tardiness problem. Theoretical Computer Science, 745, 133-149.
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» What about scheduling problems (others) ?

Problem brute force wctc wcsc | Reference
P|dec|fmaz O*(m™n!) 0*(3™) exp 4
Pldec| ", fi O*(m"n!) 0*(3™) exp 4
P4l|| Crasz O* (4™) O*(2.4142") | exp 4
P3||Crmaz 0*(3™) O*(1.7321") | exp 4
P2||Crmax O*(2™) O*(1.4142") | exp 4

P2ld;| >, wi U; 0*(3") O*(1.7321™) | exp 4

F2(|CF 0*(2™) 0*(1.4142™) | exp 4
F3 Oma:u 0*(71') O*(Sn) exp 6
F3 |f’maz O*(TL') O*(5n) exp 6
F3[|>,; fi O*(n!) O*(5") exp 3
J2|[CE .. 0*(2"™) 0*(1.4142") | exp 7

[4] C. Lenté, M. Liedloff, A. Soukhal, V.T'kindt (2013). On an extension of the Sort & Search method with
application to scheduling theory, Theoretical Computer Science, 511, pp 13-22.

[6] L. Shang, C. Lenté, M. Liedloff, V. T kindt (2018). An exponential dynamic programming algorithm for the
3-machine flowshop scheduling problem to minimize the makespan, Journal of Scheduling, 21(2) :227-233.

[7] F. Della Croce, C. Koulamas, V.T’kindt (2016). A constraint generation approach for two-machine shop

problems with jobs selection, Eur. J. Oper. Research, submitted.
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» We focus on three technics with application to scheduling :
» Dynamic programming,
» Branch-and-merge,
» Sort&Search.
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About permutation problems...

» Let us consider the 1||f;;qz scheduling problem,

» 1 jobs to be processed by a single machine. Each job ¢ is
defined by :
= a processing time p;,
» a non decreasing cost function f; depending on Cj,
» Goal : Find the permutation which minimizes f,q, = max;f;.
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About permutation problems...

» Let us consider the 1||f;;qz scheduling problem,

» 1 jobs to be processed by a single machine. Each job ¢ is
defined by :
= a processing time p;,
» a non decreasing cost function f; depending on Cj,
» Goal : Find the permutation which minimizes f,q, = max;f;.

« The worst-case complexity of ENUM...is in O*(n!).

T'kindt Exponential Algorithms with applications to scheduling
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About permutation problems...

» Letbe S C{1,...,n},
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About permutation problems...

» Letbe S C{1,...,n},

» Let Opt[S] be the recurrence function calculated on set S :
Opt[S] is equal to the minimal value of criterion max;f; for
any permutation of the jobs in §.
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About permutation problems...

o Letbe SC{1,...,n},

» Let Opt[S] be the recurrence function calculated on set S :
Opt[S] is equal to the minimal value of criterion max;f; for
any permutation of the jobs in §.

» We have :

Opt[0] = —oo, if f; can be negative

Opt[0] = 0, if f; cannot be negative

Opt[S] = minyes {max(Opt[S — {£}); £(P(5)))}

with P(S) = > g Di-

T'kindt Exponential Algorithms with applications to scheduling
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About permutation problems...

Lost with that recurrence function ? Proceed with the exercice,

Exercice.

Apply the dynamic programming algorithm on the following
instance :
n =3, [pili = [3;4;5], [di]: = [4;5;8], fi(Ci) = C; — d,

T'kindt Exponential Algorithms with applications to scheduling
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About permutation problems...

* n=3, [pili = [3;4;5], [di]s = [4;5;8], fi(Cy) = Cs — s,
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About permutation problems...

* n=3, [pili = [3;4;5], [di]s = [4;5;8], fi(Cy) = Cs — s,

» Enumerate all sets S with 1 element,
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About permutation problems...

» Enumerate all sets S with 1 element,
S ={1} : Opt[S] = max(—o0;3 —4) = —1,

T'kindt Exponential Algorithms with applications to scheduling
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About permutation problems...

* n=3, [p)i = [3;:4;5], [di]; = [4,5;8], fi(Ci) = Ci — d;,
» Enumerate all sets S with 1 element,

S ={1} : Opt[S] = max(—o0;3 —4) = —1,

S = {2} : Opt[S] = max(—o0;4 —5) = —1,

T'kindt Exponential Algorithms with applications to scheduling
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About permutation problems...

* n=3, [p)i = [3;:4;5], [di]; = [4,5;8], fi(Ci) = Ci — d;,
» Enumerate all sets S with 1 element,

S ={1} : Opt[S] = max(—o0;3 —4) = —1,

S = {2} : Opt[S] = max(—o0;4 —5) = —1,

S = {3} : Opt[S] = max(—o0;5 — 8) = —3,

T'kindt Exponential Algorithms with applications to scheduling
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About permutation problems...

* n=3, [p)i = [3;:4;5], [di]; = [4,5;8], fi(Ci) = Ci — d;,
» Enumerate all sets S with 1 element,

S ={1} : Opt[S] = max(—o0;3 —4) = —1,

S = {2} : Opt[S] = max(—o0;4 —5) = —1,

S = {3} : Opt[S] = max(—o0;5 — 8) = —3,
» Do on your own for all sets with 2 and 3 elements!

T'kindt Exponential Algorithms with applications to scheduling
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About permutation problems...

» Enumerate all sets S with 2 elements,
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About permutation problems...

» Enumerate all sets S with 2 elements,
e S={1,2}:
Opt[$] = min (max(Opt[{2}]; £(7)); max(Opt[{1}]: /(7)) ).

T'kindt Exponential Algorithms with applications to scheduling
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About permutation problems...

» Enumerate all sets S with 2 elements,
e S={1,2}:
Opt[$] = min (max(Opt[{2}]; £(7)); max(Opt[{1}]: /(7)) ).

= Opt[{1,2}] = min (max(—l;?;);max(—l; 2)) =0

T'kindt Exponential Algorithms with applications to scheduling
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About permutation problems...

» Enumerate all sets S with 2 elements,

e S={1,2}:
Opt[S] = min (maX(Opt[{Q}];fl(U);maX(Opt[{l}];fz(7))).
= Opt[{1,2}] = min (max(—l;?;);max(—l; 2)) =0

e §={1,3}:
Opt[S] = min (max(Opt[{3}); 1 (8)); max(Optl{1}]; (8)) ).

T'kindt Exponential Algorithms with applications to scheduling
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About permutation problems...

» Enumerate all sets S with 2 elements,

e S={1,2}:
Opt[S] = min (maX(Opt[{Q}];fl(U);maX(Opt[{l}];fz(7))).
= Opt[{1,2}] = min (max(—l;?;);max(—l; 2)) =0

e §={1,3}:
Opt[S] = min (max(Opt[{3}); 1 (8)); max(Optl{1}]; (8)) ).

= Opt[{1,3}] = min <max(—3; 4); max(—1; O)) =0

T'kindt Exponential Algorithms with applications to scheduling
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» Enumerate all sets S with 2 elements,
e S={1,2}:
Opt[S] = min (max(Opt[{2}]; 4(7)); max(Optl{1}]; (7)) ),
= Opt[{1,2}] = min (max(—l;?;);max(—l; 2)) =0
e §={1,3}:
Opt[$) = min (max(Opt[{3}); 4 (8)): max (Opt[{1}]: £(8)) ).
= Opt[{1,3}] = min <max(—3; 4); max(—1; O)) =0
S={2,3}:
Opt[S] = min (max(Opt[{3}]; /2(9)); max(Opt[{2}]; (9)) ).

T'kindt Exponential Algorithms with applications to scheduling
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» Enumerate all sets S with 2 elements,
e S={1,2}:
Opt[S] = min (maX(Opt[{Q}];fl(U);maX(Opt[{l}];fz(7))).
= Opt[{1,2}] = min (max(—l;?;);max(—l; 2)) =0
e §={1,3}:
Opt[$) = min (max(Opt[{3}); 4 (8)): max (Opt[{1}]: £(8)) ).
= Opt[{1,3}] = min <max(—3; 4); max(—1; O)) =0
S={2,3}:
Opt[S] = min (max(Opt[{3}]; /2(9)); max(Opt[{2}]; (9)) ).
= Opt[{2,3}] = min (max(—3;4);max(—1; 1)) =1

T'kindt Exponential Algorithms with applications to scheduling
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About permutation problems...

» Enumerate all sets S with 3 elements,
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About permutation problems...

» Enumerate all sets S with 3 elements,

» §=1{1,2,3} : Opt[S] = min (max(Opt[{Z,?)}];fl(lZ));
max (Opt[{1,3}]; £2(12));
max(Opt[{1,2}); (12)) ).

T'kindt Exponential Algorithms with applications to scheduling
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About permutation problems...

» Enumerate all sets S with 3 elements,

» §=1{1,2,3} : Opt[S] = min (maX(Opt[{2,3}];f1(12));
max (Opt[{1,3}]; £2(12));
max(Opt[{1,2}]: f5(12))

= Opt[{1,2,3}] = min (max(l; 8); max(0; 7); max(2; 4)
4

1

SN—

N—
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About permutation problems...

» Enumerate all sets S with 3 elements,

» §=1{1,2,3} : Opt[S] = min (maX(Opt[{2,3}];f1(12));
max (Opt[{1,3}]; £2(12));
max(Opt[{1, 2}]; fs(12))

= Opt[{1,2,3}] = min (max(l;S);max(O; 7);max(2;4)> =
4
« This corresponds to the schedule (1,2, 3).

1

SN—

T'kindt Exponential Algorithms with applications to scheduling
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About permutation problems...

» Analyse of the worst-case time complexity...
Opt[S] = minge s {max(Opt[S — {t}]; f:(P(S)))}

T'kindt Exponential Algorithms with applications to scheduling
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About permutation problems...

» Analyse of the worst-case time complexity...
Opt[S] = minge s {max (Opt[S — {t}]; fi(P(S)))}
» Usefull note : the computation of one Opt]| can be done in
O(n) time.

T'kindt Exponential Algorithms with applications to scheduling
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POLYTEGH with applications to scheduling

About permutation problems...

» Analyse of the worst-case time complexity...
Opt[S] = minge s {max(Opt[S — {t}]; f:(P(S)))}
» Usefull note : the computation of one Opt]| can be done in
O(n) time.
» Fundamental question : how many computations of Opt|]
have to be done?

T'kindt Exponential Algorithms with applications to scheduling
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About permutation problems...

» Analyse of the worst-case time complexity...
Opt[S] = minge s {max(Opt[S — {t}]; f:(P(S)))}
» Usefull note : the computation of one Opt]| can be done in
O(n) time.
» Fundamental question : how many computations of Opt|]
have to be done?
» Generation of all subsets of a size £ < n,
ko ().
which, by means of Newton’s formula for sum of binomials :

Ykeo (R)zFy"F = (z + y)",

can be rewritten as : 2™.

T'kindt Exponential Algorithms with applications to scheduling
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About permutation problems...

» Analyse of the worst-case time complexity...
Opt[S] = minge s {max(Opt[S — {t}]; f:(P(S)))}
» Usefull note : the computation of one Opt]| can be done in
O(n) time.
» Fundamental question : how many computations of Opt|]
have to be done?
» Generation of all subsets of a size £ < n,
k=0 (3):
which, by means of Newton’s formula for sum of binomials :
oo (R)2"y"F = (2 + )™,
can be rewritten as : 2".

« The worst-case time (and space) complexity of DynPro is in
0*(2"),
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About permutation problems...

» This improves upon the time complexity of ENUM for the
permutation problem (O*(n!)),
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About permutation problems...

» This improves upon the time complexity of ENUM for the
permutation problem (O*(n!)),

» This Dynamic Programming algorithm has been presented by
Fomin and Kratsch [3]... this is dynamic programming accross
the subsets.

[3] Fomin F, Kratsch D (2010) Exact Exponential Algorithms. Springer
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Dynamic Programming AtS

» Applicable on decomposable scheduling problems

(C(S) = Xics i),

[6] L. Shang, C. Lenté, M. Liedloff, V. T kindt (2018). An exponential dynamic programming algorithm for the

3-machine flowshop scheduling problem to minimize the makespan, Journal of Scheduling, 21(2) :227-233.
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Dynamic Programming AtS

» Applicable on decomposable scheduling problems
(C<S) = EiES pi),

» Works on the following problems : 1|dec|fmaz, 1|dec| ), fi,
1|p7’ec] 21 Wy CZ', 1‘d,‘ Zi (s UZ‘, 1|d7,| Zz wy Ti
... O*(2™) time and space.

[6] L. Shang, C. Lenté, M. Liedloff, V. T kindt (2018). An exponential dynamic programming algorithm for the

3-machine flowshop scheduling problem to minimize the makespan, Journal of Scheduling, 21(2) :227-233.
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Dynamic Programming AtS

» Applicable on decomposable scheduling problems
(C<S) = EiES pi),

» Works on the following problems : 1|dec|fmaz, 1|dec| ), fi,
1|p7’ec] 21 Wy CZ', 1‘d,‘ Zi (s UZ‘, 1|d7,| Zz wy Ti
... O*(2™) time and space.

» DPAtS can be extended ([6]) : a Pareto Dynamic
Programming enables to derive :

Problem wctc wWCSsC
F3||Crmag 0*(3™) 0*(3™)
F3 |fma,:c O*(5n) O*(5n)
F3[|>: fi | O*(5™) | O*(5™)

[6] L. Shang, C. Lenté, M. Liedloff, V. T kindt (2018). An exponential dynamic programming algorithm for the

3-machine flowshop scheduling problem to minimize the makespan, Journal of Scheduling, 21(2) :227-233.
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Pareto Dynamic Programming

» Why a need for generalization ?
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Pareto Dynamic Programming

» Why a need for generalization ?
» The 1||faz problem is decomposable but, for instance, the
F3|| Cpas is not,

F3||Cpaz : Let n jobs to be scheduled on 3 machines (same routing from M; to Mg). Each job 7 is
defined by processing times p; j, 1 < j < 3 and the goal is to find the permutation which minimizes

Cmaz = max( Cm,S ).

Exponential Algorithms with applications to scheduling
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Pareto Dynamic Programming

Why a need for generalization ?

The 1||fmaz problem is decomposable but, for instance, the
F3|| Cpas is not,

F3||Cpaz : Let n jobs to be scheduled on 3 machines (same routing from M; to Mg). Each job 7 is
defined by processing times p; j, 1 < j < 3 and the goal is to find the permutation which minimizes

Cmaz = max( Cm,S ).

The intuition : when computing
"Opt[S] = minges{max(Opt[S — {t}]; fi(P(S)))}",
many sequences (S — {t}) (at most 2") with different C?

maxr
and C3 . must be kept in memory.
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Branch-and-... What ? !

» Branch-and-Reduce (BaR) ressembles to known exact
algorithms like Branch-and-Bound or Branch-and-Cut...
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Branch-and-... What ? !

» Branch-and-Reduce (BaR) ressembles to known exact
algorithms like Branch-and-Bound or Branch-and-Cut...

» BaR are tree-search based algorithms for which we try to
reduce the a worst-case complexity,
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Branch-and-... What ? !

with applications to scheduling

» Branch-and-Reduce (BaR) ressembles to known exact
algorithms like Branch-and-Bound or Branch-and-Cut...

» BaR are tree-search based algorithms for which we try to
reduce the a worst-case complexity,

» A BaR algorithm implements three components :
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Branch-and-... What ? !

with applications to scheduling

» Branch-and-Reduce (BaR) ressembles to known exact
algorithms like Branch-and-Bound or Branch-and-Cut...
» BaR are tree-search based algorithms for which we try to
reduce the a worst-case complexity,
» A BaR algorithm implements three components :
« A branching rule,
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Branch-and-... What ? !

with applications to scheduling

» Branch-and-Reduce (BaR) ressembles to known exact
algorithms like Branch-and-Bound or Branch-and-Cut...

» BaR are tree-search based algorithms for which we try to
reduce the a worst-case complexity,

» A BaR algorithm implements three components :

« A branching rule,
» A reduction rule at each node,
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Branch-and-... What ? !

with applications to scheduling

» Branch-and-Reduce (BaR) ressembles to known exact
algorithms like Branch-and-Bound or Branch-and-Cut...

» BaR are tree-search based algorithms for which we try to
reduce the a worst-case complexity,

» A BaR algorithm implements three components :

« A branching rule,
» A reduction rule at each node,
« A stopping rule.
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Branch-and-Reduce and the MIS

« Consider the Maximum Independent Set (MIS) problem :
Let G = (V, E) be an undirected graph,

An independent set S is a set of vertices such that no two
vertices from S are connected by an edge,

The MIS problem consists in finding S with a maximum
cardinality,
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Branch-and-Reduce and the MIS

» First case : the degree d(v) <1, Vv € V.

o 0 O
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Branch-and-Reduce and the MIS

» First case : the degree d(v) <1, Vv € V.

o 0 O

» Add any vertex v with d(v) =0 into S,
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Branch-and-Reduce and the MIS

» First case : the degree d(v) <1, Vv € V.

o 0 O

» Add any vertex v with d(v) =0 into S,

» Add a vertex v with d(v) =1 into S and remove the linked
vertex (repeat),
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Branch-and-Reduce and the MIS

» Second case : the degree d(v) < 2, Vv € V.

o 0 O
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Branch-and-Reduce and the MIS

» Second case : the degree d(v) < 2, Vv € V.

o 0 O

» The graph is a set of chains,
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Branch-and-Reduce and the MIS

» Second case : the degree d(v) < 2, Vv € V.

o 0 O

» The graph is a set of chains,

» By testing, for each chain, if a vertex is in .S, the problem can
be solved in O(| V) time.
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Branch-and-Reduce and the MIS

» General case : the maximum degree of vertices is at least 3.
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Branch-and-Reduce and the MIS

» General case : the maximum degree of vertices is at least 3.

» Let us consider a BraRed algorithm with the following
branching rule :
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Branch-and-Reduce and the MIS

» General case : the maximum degree of vertices is at least 3.

» Let us consider a BraRed algorithm with the following
branching rule :

» Select the vertex v of maximum degree,
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Branch-and-Reduce and the MIS

» General case : the maximum degree of vertices is at least 3.

» Let us consider a BraRed algorithm with the following
branching rule :
» Select the vertex v of maximum degree,
« Create a child node with v € S and a child node with v ¢ S.
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Branch-and-Reduce and the MIS

» General case : the maximum degree of vertices is at least 3.
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Branch-and-Reduce and the MIS

» General case : the maximum degree of vertices is at least 3.

» Select vertex b of degree 4,

A chiain...
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Branch-and-Reduce and the MIS
» General case : the maximum degree of vertices is at least 3.

» Select vertex b of degree 4,

A chiain...

» Case 1: b€ S, then a,c, e and f are removed. Vertex d € §
by deduction.
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Branch-and-Reduce and the MIS

» General case : the maximum degree of vertices is at least 3.

» Select vertex b of degree 4,

A chiain...

» Case 1: b€ S, then a,c, e and f are removed. Vertex d € §
by deduction.

» Case2: b ¢ S, then ¢ and f have degree 0 and are put in S.
Vertices a, d, e form a graphe of max degree 2... solvable in
polynomial time.
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Branch-and-Reduce and the MIS

» General case : the maximum degree of vertices is at least 3.

» Select vertex b of degree 4,

A chiain...

» In that case 2 nodes have been built.

T'kindt Exponential Algorithms with applications to scheduling



. o | ”@ @ Exact or Heuristic Exponential-Time Algorithms
‘OURS

POLYTEGH with applications to scheduling

Branch-and-Reduce and the MIS

» General case : the maximum degree of vertices is at least 3.

» Select vertex b of degree 4,

A chiain...

» In that case 2 nodes have been built.

» Reduction rule : when a decision is taken on a vertex v,
decisions are taken for all its neighborhood,

T'kindt Exponential Algorithms with applications to scheduling
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Branch-and-Reduce and the MIS

» General case : the maximum degree of vertices is at least 3.

» Select vertex b of degree 4,

R .
» In that case 2 nodes have been built.

» Reduction rule : when a decision is taken on a vertex v,
decisions are taken for all its neighborhood,

» Stopping rule : for a node, stop branching as far as the
maximum degree is 2.
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Branch-and-Reduce and the MIS

» The BraRed algorithm (main iterated loop) :
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Branch-and-Reduce and the MIS

» The BraRed algorithm (main iterated loop) :
« Put all vertices of degree 0 or 1 into S,
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Branch-and-Reduce and the MIS

» The BraRed algorithm (main iterated loop) :

« Put all vertices of degree 0 or 1 into S,
» Let v be the vertex with maximum degree :
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Branch-and-Reduce and the MIS

» The BraRed algorithm (main iterated loop) :

« Put all vertices of degree 0 or 1 into S,
» Let v be the vertex with maximum degree :
« if d(v) > 3, create two child nodes : one with v € S, another
with v ¢ S. Propagate to its neighborhood.

T'kindt Exponential Algorithms with applications to scheduling
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Branch-and-Reduce and the MIS

» The BraRed algorithm (main iterated loop) :
« Put all vertices of degree 0 or 1 into S,
» Let v be the vertex with maximum degree :
« if d(v) > 3, create two child nodes : one with v € S, another
with v ¢ S. Propagate to its neighborhood.
» if d(v) < 3, solves the problem in polynomial time at the
current node.
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Branch-and-Reduce and the MIS

with applications to scheduling

» The BraRed algorithm (main iterated loop) :
« Put all vertices of degree 0 or 1 into S,
» Let v be the vertex with maximum degree :
« if d(v) > 3, create two child nodes : one with v € S, another
with v ¢ S. Propagate to its neighborhood.
» if d(v) < 3, solves the problem in polynomial time at the
current node.

» The above processing is applied on any unbranched node in
BraRed.
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Branch-and-Reduce and the MIS

» What is the worst-case complexity of BraRed ?
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Branch-and-Reduce and the MIS

» What is the worst-case complexity of BraRed ?

» Let us observe the branching rule : T'(n) is the time required
to solve a problem with n vertices,
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Branch-and-Reduce and the MIS

» What is the worst-case complexity of BraRed ?

» Let us observe the branching rule : T'(n) is the time required
to solve a problem with n vertices,

» We can state that :
Tn)<T(n—1—4d(v))+ T(n—1)
with v the vertex selected for branching.

T'kindt Exponential Algorithms with applications to scheduling
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Branch-and-Reduce and the MIS

» What is the worst-case complexity of BraRed ?

» Let us observe the branching rule : T'(n) is the time required
to solve a problem with n vertices,

» We can state that :
Tn)<T(n—1—4d(v))+ T(n—1)
with v the vertex selected for branching.

» The worst case is obtained when d(v) is minimal, i.e.
d(v) =3.
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Branch-and-Reduce and the MIS

» What is the worst-case complexity of BraRed ?

» Let us observe the branching rule : T'(n) is the time required
to solve a problem with n vertices,

» We can state that :
Tn)<T(n—1—d(v))+ T(n—-1)
with v the vertex selected for branching.
» The worst case is obtained when d(v) is minimal, i.e.
d(v) =3.
» So, in the worst case the time complexity for solving the
problem is T'(n) = T'(n —4) + T(n — 1) with n = | V|.
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Branch-and-Reduce and the MIS

» How can we recursively evaluate
Tn)=T(n—4)+T(n—-1)7
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Branch-and-Reduce and the MIS

» How can we recursively evaluate
T(n)=T(n—4)+T(n—-1)7
By assuming that T'(n) = z", we can write :
" = ‘,L.7L74 + xnfl
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Branch-and-Reduce and the MIS

with applications to scheduling

» How can we recursively evaluate
T(n)=T(n—4)+T(n—-1)7
By assuming that T'(n) = z", we can write :
" = ‘,L.7L74 + xnfl

sl=z%+z1
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Branch-and-Reduce and the MIS

» How can we recursively evaluate
Tn)=T(n—4)+T(n—-1)7
By assuming that T'(n) = z", we can write :
" = ‘,L.7L74 + xnfl
Sl=g%+z7!
» Then, compute the largest zero of the above function,
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Branch-and-Reduce and the MIS

» How can we recursively evaluate
Tn)=T(n—4)+T(n—-1)7
By assuming that T'(n) = z", we can write :
" = ‘,L,7L74 + xnfl
Sl=g 44271
» Then, compute the largest zero of the above function,

* By using a solver like Matlab (for instance), we obtain
0O*(1.3803™) as the worst-case time complexity for BraRed,
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Branch-and-Reduce and the MIS

with applications to scheduling

» How can we recursively evaluate
Tn)=T(n—4)+T(n—-1)7
By assuming that T'(n) = z", we can write :
" = ‘,L,7L74 + xnfl
Sl=g 44271
» Then, compute the largest zero of the above function,

* By using a solver like Matlab (for instance), we obtain
0O*(1.3803™) as the worst-case time complexity for BraRed,

» 0*(1.3803™) is not bad. Also, BraRed has a polynomial space
complexity,
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Branch-and-Reduce and the MIS

» How can we recursively evaluate
Tn)=T(n—4)+T(n—-1)7
By assuming that T'(n) = z", we can write :
" = ‘,L,7L74 + xnfl
Sl=g 44271
» Then, compute the largest zero of the above function,

* By using a solver like Matlab (for instance), we obtain
0O*(1.3803™) as the worst-case time complexity for BraRed,

» 0*(1.3803™) is not bad. Also, BraRed has a polynomial space
complexity,

*» Notice that this is an upper bound (not tight at all), that
could be refined.
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Branch-and-Reduce : the 1|d;| Y, T;

* Let us consider the 1|d;| >, T; scheduling problem,
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Branch-and-Reduce : the 1|d;| Y, T;

* Let us consider the 1|d;| >, T; scheduling problem,

* n jobs to be processed by a single machine. Each job i is
defined by :
= a processing time p;, and a due date d;,
« T; = max(0; C; — d;) is its tardiness,
« Goal : Find the permutation which minimizes ", T;.
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Branch-and-Reduce : the 1|d;| Y, T;

* Let us consider the 1|d;| >, T; scheduling problem,
* n jobs to be processed by a single machine. Each job i is
defined by :
= a processing time p;, and a due date d;,
« T; = max(0; C; — d;) is its tardiness,
« Goal : Find the permutation which minimizes ", T;.

» The worst-case complexity of ENUM is in O*(n!) time.
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Branch-and-Reduce : the 1|d;| Y, T;

* Let us consider the 1|d;| >, T; scheduling problem,

* n jobs to be processed by a single machine. Each job i is
defined by :

= a processing time p;, and a due date d;,
« T; = max(0; C; — d;) is its tardiness,
« Goal : Find the permutation which minimizes ", T;.
» The worst-case complexity of ENUM is in O*(n!) time.
» The worst-case complexity of DPAtS is in O*(2") time and
space.
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Branch-and-Reduce : the 1|d;| Y, T;

» We assume : p; > pa > ... > p,, and [k] is the job in position
k in EDD,

[8] E. L. Lawler (1977), “A pseudopolynomial algorithm for sequencing jobs to minimize total tardiness”, Annals of

Discrete Mathematics 1, 331-342.
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Branch-and-Reduce : the 1|d;| Y, T;

» We assume : p; > pa > ... > p,, and [k] is the job in position
k in EDD,
» To define the branching scheme, we make use of ([8]) :

Property

Let job 1 in LPT order correspond to job [k] in EDD order. Then, job 1 can be set only in positions h > k and

the jobs preceding and following job 1 are uniquely determined as

Bi(h) =A{01[2],.. ., [k = 1],

[8] E. L. Lawler (1977), “A pseudopolynomial algorithm for sequencing jobs to minimize total tardiness”, Annals of

Discrete Mathematics 1, 331-342.
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Branch-and-Reduce : the 1|d;| Y, T;

» We assume : p; > pa > ... > p,, and [k] is the job in position
k in EDD,
» To define the branching scheme, we make use of ([8]) :

Property

Let job 1 in LPT order correspond to job [k] in EDD order. Then, job 1 can be set only in positions h > k and

the jobs preceding and following job 1 are uniquely determined as

Bi(h) =A{01[2],.. ., [k = 1],

» Worst case : d1 < dp < ... < d,,.

[8] E. L. Lawler (1977), “A pseudopolynomial algorithm for sequencing jobs to minimize total tardiness”, Annals of

Discrete Mathematics 1, 331-342.
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» We assume (wc) : p1 > p2 > ... >pyand di < dp < ... < dp,
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Branch-and-Reduce : the 1|d;| Y, T;

» We assume (wc) : py > p2 > ... > ppand di < dp < ... < dp,
» Branching scheme :
'

'

positions 1 to k— 1 position positions & +1 to n
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Branch-and-Reduce : the 1|d;| Y, T;

» We assume (wc) : p1 > p2> ... > pyand di < dp < ... < dp,

» Branching scheme :

positions 1 to k — 1 position k positions k + 1 to n
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Branch-and-Reduce : the 1|d;| Y, T;

» We assume (wc) : p1 > p2> ... > pyand di < dp < ... < dp,

» Branching scheme :

positions 1 to k — 1 position k positions k + 1 to n

» Remark : When job 1 is branched on position & two
subproblems of size (k — 1) and (n — k) have to be solved.
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Branch-and-Reduce : the 1|d;| Y, T;

Exercice.

Build the search tree on the following instance :
n =3, [p]i = [5;4;3], [di]: = [6;8;10],
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Branch-and-Reduce : the 1|d;| Y, T;

» First level, the longest job is job 1 : it can be scheduled in
positions 1, 2 or 3 leading to the following nodes,
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Branch-and-Reduce : the 1|d;| Y, T;

» First level, the longest job is job 1 : it can be scheduled in
positions 1, 2 or 3 leading to the following nodes,

ook nede

Lt
(1) {23 K (4){&3 D)

s (3, 12)
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Branch-and-Reduce : the 1|d;| Y, T;

» Second level, the longest job is job 2,
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Branch-and-Reduce : the 1|d;| Y, T;

» Second level, the longest job is job 2,

ook nede.
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Branch-and-Reduce : the 1|d;| Y, T;

» We get the following recursive relation :
T(n)=2T(n—1)42T(n—2)+...42T(2)+2T(1)+ O(p(n))
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Branch-and-Reduce : the 1|d;| Y, T;

» We get the following recursive relation :
T(n)=2T(n—1)42T(n—2)+...42T(2)+2T(1)+ O(p(n))
& T(n)=3T(n—1)+ O(p(n))
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Branch-and-Reduce : the 1|d;| Y, T;

» We get the following recursive relation :
T(n) =2T(n—1)+2T(n—2)+...42T(2)+2T(1)+ O(p(n))
& T(n)=3T(n—1)+ O(p(n))
« This yields O*(3™) worst-case time complexity, and
polynomial space.
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Branch-and-Reduce : the 1|d;| Y, T;

» By making use of the following property ([9])...

Property

For any pair of adjacent positions (i,1 + 1) that can be assigned to

job 1, at least one of them is eliminated.

[9] W. Szwarc and S. Mukhopadhyay (1996), “Decomposition of the single machine total tardiness problem”,

Operations Research Letters 19, 243-250.
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Branch-and-Reduce : the 1|d;| Y, T;

» By making use of the following property ([9])...

Property

For any pair of adjacent positions (i,1 + 1) that can be assigned to

job 1, at least one of them is eliminated.

.. we can derive that :
T(n)=2T(n—1)42T(n—3)+...42T(4)+2T(2)+ O(p(n))

[9] W. Szwarc and S. Mukhopadhyay (1996), “Decomposition of the single machine total tardiness problem”,

Operations Research Letters 19, 243-250.
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Branch-and-Reduce : the 1|d;| Y, T;

» By making use of the following property ([9])...

Property

For any pair of adjacent positions (i,1 + 1) that can be assigned to

job 1, at least one of them is eliminated.
.. we can derive that :
T(n)=2T(n—1)42T(n—3)+...42T(4)+2T(2)+ O(p(n))
& T(n)=2T(n—-1)+ T(n—2)+ O(p(n))

[9] W. Szwarc and S. Mukhopadhyay (1996), “Decomposition of the single machine total tardiness problem”,

Operations Research Letters 19, 243-250.
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Branch-and-Reduce : the 1|d;| Y, T;

» By making use of the following property ([9])...

Property

For any pair of adjacent positions (i,1 + 1) that can be assigned to

job 1, at least one of them is eliminated.

.. we can derive that :
T(n)=2T(n—-1)+2T(n—3)+...4+42T(4)+2T(2)+ O(p(n))
& T(n)=2T(n—-1)+ T(n—2)+ O(p(n))
« This yields O*(2.4143™) worst-case time complexity, and
polynomial space.

[9] W. Szwarc and S. Mukhopadhyay (1996), “Decomposition of the single machine total tardiness problem”,

Operations Research Letters 19, 243-250.
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Branch-and-Reduce : add-ons

» Changing the way to do the analysis : Measure and Conquer,

[5] M. Garraffa, L. Shang, F. Della Croce, V. T'Kindt (2018). An exact exponential branch-and-merge algorithm for

the single machine tardiness problem. Theoretical Computer Science, 745, 133-149.
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Branch-and-Reduce : add-ons

» Changing the way to do the analysis : Measure and Conquer,

» Pruning nodes by use of an exponential memory :
Memo(r)ization,

[5] M. Garraffa, L. Shang, F. Della Croce, V. T'Kindt (2018). An exact exponential branch-and-merge algorithm for

the single machine tardiness problem. Theoretical Computer Science, 745, 133-149.
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Branch-and-Reduce : add-ons

» Changing the way to do the analysis : Measure and Conquer,
» Pruning nodes by use of an exponential memory :
Memo(r)ization,
» Pruning nodes without the use of an exponential memory :
Merging,
1|d;| Y=, T; : O*(2™) time and poly space when DPAtS uses
O*(2™) space ([5]).

[5] M. Garraffa, L. Shang, F. Della Croce, V. T'Kindt (2018). An exact exponential branch-and-merge algorithm for

the single machine tardiness problem. Theoretical Computer Science, 745, 133-149.
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Branch-and-Reduce : to conclude

» BaR sounds like BaB (for instance), however there are
different,
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Branch-and-Reduce : to conclude

» BaR sounds like BaB (for instance), however there are
different,

» Open question : what would be the practical efficiency of a
BaR with all the materials of a BaB included 77?77
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Branch-and-Reduce : to conclude

» BaR sounds like BaB (for instance), however there are
different,

» Open question : what would be the practical efficiency of a
BaR with all the materials of a BaB included 7?7?77

» The complexity analysis can be very complicated (Measure
and Conquer, merging, ...),
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Branch-and-Reduce : to conclude

» BaR sounds like BaB (for instance), however there are
different,

» Open question : what would be the practical efficiency of a
BaR with all the materials of a BaB included 7?7?77

» The complexity analysis can be very complicated (Measure
and Conquer, merging, ...),

» It is hard to get tight upper bounds on the worst-case
complexity,
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Branch-and-Reduce : to conclude

» BaR sounds like BaB (for instance), however there are
different,

» Open question : what would be the practical efficiency of a
BaR with all the materials of a BaB included 7?7?77

» The complexity analysis can be very complicated (Measure
and Conquer, merging, ...),

» It is hard to get tight upper bounds on the worst-case
complexity,

» Some researches focus on getting lower bounds on that
complexity,
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Branch-and-Reduce : to conclude

» BaR sounds like BaB (for instance), however there are
different,

» Open question : what would be the practical efficiency of a
BaR with all the materials of a BaB included 77?77

» The complexity analysis can be very complicated (Measure
and Conquer, merging, ...),

» It is hard to get tight upper bounds on the worst-case
complexity,

» Some researches focus on getting lower bounds on that
complexity,

» Important point : leads to polynomial space ETA.

T'kindt Exponential Algorithms with applications to scheduling
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Sort & Search : the principles

» It is an old technique which consists in sorting “data” to make
the search for an optimal solution more efficient,

* It has been proposed by Horowitz and Sahni ([6]) to solve the
knapsack problem,

[6] E. Horowitz and G. Sahni. Computing partitions with applications to the knapsack problem, Journal of

the ACM, vol 21, pp.277-292, 1974

T'kindt Exponential Algorithms with applications to scheduling



UT st o | ”@ @ Exact or Heuristic Exponential-Time Algorithms

POLYTEGH with applications to scheduling

Sort & Search : the principles

» It is an old technique which consists in sorting “data” to make
the search for an optimal solution more efficient,
* It has been proposed by Horowitz and Sahni ([6]) to solve the
knapsack problem,
» Let us start with the KNAPSACK problem,
» Let be O ={o1,...,0,} a set of n objects,
» Each object o; is defined by a value v(0;) and a weight w(o;),
1< <n,
» The, integer, capacity W of the knapsack.
« Goal : Find O’ C O such that ) _, w(o) < W and
> ocor v(0) is maximum.

[6] E. Horowitz and G. Sahni. Computing partitions with applications to the knapsack problem, Journal of

the ACM, vol 21, pp.277-292, 1974
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Sort & Search : the principles

» It is an old technique which consists in sorting “data” to make
the search for an optimal solution more efficient,
* It has been proposed by Horowitz and Sahni ([6]) to solve the
knapsack problem,
» Let us start with the KNAPSACK problem,
» Let be O ={o1,...,0,} a set of n objects,
» Each object o; is defined by a value v(0;) and a weight w(o;),
1< <n,
» The, integer, capacity W of the knapsack.
« Goal : Find O’ C O such that ) _, w(o) < W and
> ocor v(0) is maximum.

» We can easily show that ENUM is in O*(2") time,

[6] E. Horowitz and G. Sahni. Computing partitions with applications to the knapsack problem, Journal of

the ACM, vol 21, pp.277-292, 1974
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» The idea is the following : separate the instance into 2
sub-instances,

Instance
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Sort & Search : the principles

» The idea is the following : separate the instance into 2
sub-instances,

Instance I

@&

» Then, enumerate all partial solutions from ; and all partial
solutions from Is,

Sy

W
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Sort & Search : the principles

» By recombination of partial solutions, find the optimal
solution of the initial problem

A complete solution s = s; + 53
— 0
s =

S1 Instance T

I I

T'kindt Exponential Algorithms with applications to scheduling



UT st o | ”@ @ Exact or Heuristic Exponential-Time Algorithms

POLYTEGH with applications to scheduling

Sort & Search : the principles

» By recombination of partial solutions, find the optimal
solution of the initial problem

A complete solution 5 = ) + sz

o ¢ §

S1 Instance T

i 2

» The combinatoric appears when building S; and Sy by
enumeration (sort phase) and when finding in these sets the
optimal solution (search phase).
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Sort & Search : the principles

» The idea : cut the cake into two equal-size pieces and just pay
for one (but take both!),
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Sort & Search : the principles

» The idea : cut the cake into two equal-size pieces and just pay
for one (but take both!),

» Let us go back to the KNAPSACK and see how it works on an
example,
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Sort & Search : the principles

» The idea : cut the cake into two equal-size pieces and just pay
for one (but take both!),

» Let us go back to the KNAPSACK and see how it works on an
example,

*» We have n =6, O ={a,b,c,d,e,f} and W = 9.

(0] ‘ a b ¢ d e f
v |3 4 2 5 1 3 01 ={a,b,c} O={d, e, f}
w |4 2 1 3 2 5

T'kindt Exponential Algorithms with applications to scheduling
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Sort & Search : the principles

» The idea : cut the cake into two equal-size pieces and just pay
for one (but take both!),

» Let us go back to the KNAPSACK and see how it works on an
example,

*» We have n =6, O ={a,b,c,d,e,f} and W = 9.

(0] ‘ a b ¢ d e f
v |3 4 2 5 1 3 O ={abc} Ox={def}
w |4 2 1 3 2 5

» Next, we enumerate the set of all possible assignments for Oy

(Table Tl),

T1 ‘ 0 {a} {0} {c} {a,b} {a,c} {b,c} {a,b,c}
SSv |0 3 4 2 7 5 6 9
Sw|o0 4 2 1 6 5 3 7

T'kindt Exponential Algorithms with applications to scheduling
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» Next, we do the same for Oy (Table T3),

T, |0 {e} {d}y {f} {de} {ef} {df} {def}
Sv|0 1 5 3 6 4 8 9
Sw|0 2 3 5 5 7 8 10
G |1 2 3 3 5 5 7 8

Note : In table T5, columns are sorted by increasing order of
> w.

Note : /) is the column number with maximum > v “on the
left” of the current column.
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Sort & Search : the principles

» Next, we do the same for Oy (Table T3),

T, |0 {e} {d}y {f} {de} {ef} {df} {def}
Sv|0 1 5 3 6 4 8 9
Sw|0 2 3 5 5 7 8 10
G |1 2 3 3 5 5 7 8

Note : In table T5, columns are sorted by increasing order of

> w.

Note : /) is the column number with maximum > v “on the
left” of the current column.

» That was the Sort phase !
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Sort & Search : the principles

» Next, we do the same for Oy (Table T3),

T, |0 {e} {d}y {f} {de} {ef} {df} {def}
Sv|0 1 5 3 6 4 8 9
Sw|0 2 3 5 5 7 8 10
G |1 2 3 3 5 5 7 8

Note : In table T5, columns are sorted by increasing order of

> w.

Note : ¢ is the column number with maximum > v “on the
left” of the current column.

» That was the Sort phase !

« Running time (and space) should be “about” 2"/2,

T'kindt Exponential Algorithms with applications to scheduling
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Sort & Search : the principles

» Search phase can start,
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Sort & Search : the principles

» Search phase can start,

» For any column 5 € T1, find the “best” complementing column
ke TQ,
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Sort & Search : the principles

» Search phase can start,

» For any column 5 € T1, find the “best” complementing column
ke TQ,

* Best : column & which maximizes ) w... then column £ will
be the one which maximizes > v,

T'kindt Exponential Algorithms with applications to scheduling
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Ty 0 {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}
S 0 3 4 2 7 5 [3 9
>Sw 0 4 2 1 6 5 3 7
Table 2
To | 0 {ey {d} {f} {d,e} {ef} {df} {d,ef}
> 0 1 5 3 [3 4 8 9
Sw 0 2 3 5 5 7 8 10
7 1 2 3 3 5 5 7 8

Search phase (W =9)

J | o {a} {b} {c} {a,b} {fa,c} {b,c} {a,b,c}
k {d,f} {d,e} {d,e} {d,f} {d} {d} {d, e} {e}
9 7 9 9 8 8 9

w(0)) + w(0y) 8
v(0)) + v(05,) 8 ) 10 10 12 10 i1z 10

Consequently, the optimal solution has value 12 and is achieved
with {a, b,d} or {b,c,d,e}.
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Sort & Search : formalization

» Sort & Search is a powerfull technique that can be applied to
a lot of problems,
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Sort & Search : formalization

» Sort & Search is a powerfull technique that can be applied to
a lot of problems,

* Intuitively, to be applicable efficiently, problems must satisfy
two properties :
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Sort & Search : formalization

» Sort & Search is a powerfull technique that can be applied to
a lot of problems,
* Intuitively, to be applicable efficiently, problems must satisfy
two properties :
# Two partial solutions can be combined in polynomial time to
get a feasible solution,
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Sort & Search : formalization

» Sort & Search is a powerfull technique that can be applied to
a lot of problems,
* Intuitively, to be applicable efficiently, problems must satisfy
two properties :
# Two partial solutions can be combined in polynomial time to
get a feasible solution,
2 The Sort phase must enable to lead to a Search phase which
complexity does not exceed the one required to build the
tables.

T'kindt Exponential Algorithms with applications to scheduling
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Sort & Search : formalization

» Sort & Search is a powerfull technique that can be applied to
a lot of problems,
* Intuitively, to be applicable efficiently, problems must satisfy
two properties :
# Two partial solutions can be combined in polynomial time to
get a feasible solution,
2 The Sort phase must enable to lead to a Search phase which

complexity does not exceed the one required to build the
tables.

» Sort & Search, as introduced by Horowitz and Sahni, can be

applied to a class of problems called Single Constraint
Problems (SCP),
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Sort & Search : formalization

» Let be A = (d;, d,...dn,) a table of ny vectors of
dimension dg4,
* Let be B = ((b1,b1), (b2,03)... (bng,by,)) a table of np
couples,
« Let f and ¢’ be two functions from R%*! to R, increasing
with respect to their last variable,
» The (SCP) :
Minimize f(aj, by)
s.t.
g'(aj, b) = 0
g € A, (by, by) € B.
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Sort & Search : formalization

» Let be A = (d;, d,...dn,) a table of ny vectors of
dimension dg4,
* Let be B = ((b1,b1), (b2,03)... (bng,by,)) a table of np
couples,
« Let f and ¢’ be two functions from R%*! to R, increasing
with respect to their last variable,
» The (SCP) :
Minimize f(aj, by)
s.t.
g'(aj, b) = 0
g € A, (by, by) € B.
» There exists a Sort & Search algorithm in
O(nplogs(np) + nalogy(np)) time and O(ny + np) space.

T'kindt Exponential Algorithms with applications to scheduling



UT st o | ”@ @ Exact or Heuristic Exponential-Time Algorithms

POLYTEGH with applications to scheduling

Sort & Search : formalization

» Let be A = (d;, d,...dn,) a table of ny vectors of
dimension dg4,
* Let be B = ((b1,b1), (b2,03)... (bng,by,)) a table of np
couples,
« Let f and ¢’ be two functions from R%*! to R, increasing
with respect to their last variable,
» The (SCP) :
Minimize f(aj, by)
s.t.
g'(aj, b) = 0
g € A, (by, by) € B.
» There exists a Sort & Search algorithm in
O(nplogs(np) + nalogy(np)) time and O(ny + np) space.
» KNAPSACK : ny = ng = 22 = O*(Q%) time and space.

T'kindt Exponential Algorithms with applications to scheduling
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Sort & Search : generalization

» We can extend the original Sort & Search approach to
Multiple Constraint Problems (MCP),
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Sort & Search : generalization

» We can extend the original Sort & Search approach to
Multiple Constraint Problems (MCP),

» Let be A = (d;, d,...dn,) a table of ny vectors of
dimension dg4,
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b, = (627 b, ..., bgB) of dimension dp + 1,
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» We can extend the original Sort & Search approach to
Multiple Constraint Problems (MCP),

» Let be A = (d;, d,...dn,) a table of ny vectors of
dimension dg4,

» Let be B = (51, 52, e 5713) a table of np vectors
b, = (627 b,i, e bgB) of dimension dp + 1,

* Let f and g/ (1 < ¢ < dp) be dg + 1 functions from R4+ to
R (increasing with respect to their last variable),
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Sort & Search : generalization

» We can extend the original Sort & Search approach to
Multiple Constraint Problems (MCP),
» Let be A = (d;, d,...dn,) a table of ny vectors of
dimension dg4,
» Let be B = (51, 52, e 5713) a table of np vectors
b, = (627 b,i, e bgB) of dimension dp + 1,
* Let f and g/ (1 < ¢ < dp) be dg + 1 functions from R4+ to
R (increasing with respect to their last variable),
» The (MCP) is defined by :
Minimize f(a;, bY)
s.t.
90(@;, bp) >0, (1<¢<dg)

—

a; € A, b, € B.
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» By means of appropriate data structures (range trees) and
properties on rectangular range queries...
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Sort & Search : generalization

» By means of appropriate data structures (range trees) and

properties on rectangular range queries...
* ... we can establish a Sort & Search algorithm in
O(np loggB(nB) + na 10ggB+2(n3)) time and

O(nplogd® ' (ng)) space ([4]).

[4] C. Lente, M. Liedloff, A. Soukhal and V. T’kindt. On an extension of the Sort & Search method with

application to scheduling theory, Theoretical Computer Science, vol 511, pp. 13-22, 2013.

T'kindt Exponential Algorithms with applications to scheduling



L

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

UTisins o) L@

POLYTECH

Sort & Search : an application

» Consider the P3||Cpaz scheduling problem :
» 3 identical machines are available to process n jobs,
» Each job 7 is defined by a processing time p; and can be
processed by any of the 3 machines,
» Find a schedule which minimizes the makespan
Crnaz = max;(C;) with C; the completion time of job .
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» Consider the P3||Cpaz scheduling problem :
» 3 identical machines are available to process n jobs,
» Each job 7 is defined by a processing time p; and can be
processed by any of the 3 machines,
» Find a schedule which minimizes the makespan
Crnaz = max;(C;) with C; the completion time of job .

« This problem is N'P-hard.
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Sort & Search : an application

» Consider the P3||Cpaz scheduling problem :
» 3 identical machines are available to process n jobs,
» Each job 7 is defined by a processing time p; and can be
processed by any of the 3 machines,
» Find a schedule which minimizes the makespan
Crnaz = max;(C;) with C; the completion time of job .

« This problem is N'P-hard.
* The worst-case time complexity of ENUM is in O*(3"),
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» Let I be an instance with n jobs given in a set 7,
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Sort & Search : an application (main lines)

» Let I be an instance with n jobs given in a set 7,
o Let 1 ={1,..., | %]} be the subset of the | %] first job of .7,

o Let I, = {L%J +1,...,n} be the subset of the [%1 last job
of 7,
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Sort & Search : an application (main lines)

» Let I be an instance with n jobs given in a set 7,
o Let 1 ={1,..., | %]} be the subset of the | %] first job of .7,
Let I, = {| %] +1,...,n} be the subset of the [%2] last job

of 7,
e Let be & = (E{,h Ef’Q, Efg) a 3-partition of I
(1<j <3,
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Sort & Search : an application (main lines)

» Let I be an instance with n jobs given in a set 7,
o Let 1 ={1,..., | %]} be the subset of the | %] first job of .7,
o Let I, = {L%J +1,...,n} be the subset of the [%1 last job

of 7,
e Let be & = (E{,h E{jQ, Efg) a 3-partition of I
(1<j <3,

» We associate to it a schedule s{ containing the sequence of
jobs on machines,
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Sort & Search : an application (main lines)

» Let I be an instance with n jobs given in a set 7,
o Let 1 ={1,..., | %]} be the subset of the | %] first job of .7,
o Let I, = {L%J +1,...,n} be the subset of the [%1 last job

of 7,
e Let be & = (E{,h E{jQ, Efg) a 3-partition of I
(1<j <3,

» We associate to it a schedule s{ containing the sequence of
jobs on machines,

» Similarly, let be 85“ a 3-partition of I, (1 <j < 3|IQ|),
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Sort & Search : an application (main lines)

» Let I be an instance with n jobs given in a set 7,
o Let 1 ={1,..., | %]} be the subset of the | %] first job of .7,
o Let I, = {L%J +1,...,n} be the subset of the [%1 last job

of 7,
e Let be & = (E{,h E{jQ, Efg) a 3-partition of I
(1<j <3,

» We associate to it a schedule s{ containing the sequence of
jobs on machines,

» Similarly, let be 85“ a 3-partition of I, (1 <j < 3|IQ|),

» We associate to it a schedule s§ containing the sequence of
jobs on machines,
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o Let 1 ={1,..., | %]} be the subset of the | %] first job of .7,

o Let I, = {L%J +1,...,n} be the subset of the [%1 last job
of 7,

T'kindt Exponential Algorithms with applications to scheduling



UT st o | I|® @ Exact or Heuristic Exponential-Time Algorithms

POLYTEGH with applications to scheduling

Sort & Search : an application (main lines)

» Let I be an instance with n jobs given in a set 7,
o Let 1 ={1,..., | %]} be the subset of the | %] first job of .7,
Let I, = {| %] +1,...,n} be the subset of the [%2] last job

of 7,
e Let be & = (E{,h Ef’Q, Efg) a 3-partition of I
(1<j <3,

T'kindt Exponential Algorithms with applications to scheduling



@ Exact or Heuristic Exponential-Time Algorithms

UTssine POLYTEGH l Il@ with applications to scheduling

Sort & Search : an application (main lines)

» Let I be an instance with n jobs given in a set 7,
o Let 1 ={1,..., | %]} be the subset of the | %] first job of .7,
o Let I, = {L%J +1,...,n} be the subset of the [%1 last job

of 7,
e Let be & = (E{,h E{jQ, Efg) a 3-partition of I
(1<j <3,

» We associate to it a schedule s{ containing the sequence of
jobs on machines,
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» Let I be an instance with n jobs given in a set 7,
o Let 1 ={1,..., | %]} be the subset of the | %] first job of .7,
o Let I, = {L%J +1,...,n} be the subset of the [%1 last job

of 7,
e Let be & = (E{,h E{jQ, Efg) a 3-partition of I
(1<j <3,

» We associate to it a schedule s{ containing the sequence of
jobs on machines,

» Similarly, let be 85“ a 3-partition of I, (1 <j < 3|IQ|),
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Sort & Search : an application (main lines)

» Let I be an instance with n jobs given in a set 7,
o Let 1 ={1,..., | %]} be the subset of the | %] first job of .7,
o Let I, = {L%J +1,...,n} be the subset of the [%1 last job

of 7,
e Let be & = (E{,h E{jQ, Efg) a 3-partition of I
(1<j <3,

» We associate to it a schedule s{ containing the sequence of
jobs on machines,

» Similarly, let be 85“ a 3-partition of I, (1 <j < 3|IQ|),

» We associate to it a schedule s§ containing the sequence of
jobs on machines,
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Sort & Search : an application

» The situation is pictured below (s; comes from I, s, comes
from L),

Bi(s1)
-
Machine 1

Machine 2

-
3x(51)
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Sort & Search : an application

» The situation is pictured below (s; comes from I, s, comes
from L),

Bi(s1)
-
Machine 1
Machine 2 Py(s1)

Py(s1)

-
3x(51)

» Let us state some necessary properties,
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Sort & Search : an application

» The situation is pictured below (s; comes from I, s, comes
from L),

Bi(s1)
-
Machine 1 Pi(s)
Machine 2 P(s))

Machine 3 Ps(s1)

-
35(s1)

» Let us state some necessary properties,

» Let Py(s) be the sum of processing times of jobs assigned to
machine £ in s, £ € [1, 3],
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Sort & Search : an application

» The situation is pictured below (s; comes from I, s, comes
from L),

Bi(s1)
-
Machine 1 Pi(s)
Machine 2 P(s))

Machine 3 Ps(s1)

-
35(s1)

» Let us state some necessary properties,

» Let Py(s) be the sum of processing times of jobs assigned to
machine £ in s, £ € [1, 3],

» Let P(s) be the sum of processing times of all jobs of s,
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Sort & Search : an application

Si(s1)
-
Machine 1

Machine 2

Machine 3

-
33(s1)

» Let us define dy(s) = P3(s) — Py(s) as the difference between
the load of the last machine and machine 7,
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Sort & Search : an application

Si(s1)
-
Machine 1

Machine 2

Machine 3

-
33(s1)

» Let us define dy(s) = P3(s) — Py(s) as the difference between

the load of the last machine and machine 7,
» We have :
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Sort & Search : an application

Si(s1)
-
Machine 1

Machine 2

Machine 3

-
33(s1)

» Let us define dy(s) = P3(s) — Py(s) as the difference between

the load of the last machine and machine 7,
» We have :

« P(s) =51 Puls),
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Sort & Search : an application

[Machine 1 Pi(si)
Machine 2 Pa(s1)

Machine 3 Ps(s1)

» Let us define dy(s) = P3(s) — Py(s) as the difference between

the load of the last machine and machine 7,
» We have :

« P(s) =51 Puls),
o« Yio106(s) = Yy 0u(s) = 3P3(s) — P(s).
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Sort & Search : an application

[Machine 1 Pi(si)
Machine 2 Pa(s1)

Machine 3 Ps(s1)

» Let us define dy(s) = P3(s) — Py(s) as the difference between
the load of the last machine and machine 7,
» We have :
» P(s) =34 Pu(s),
* 3001 0e(s) = Yoy Oe(s) = 3Ps(s) — P(s).
» Without loss of generality we can restrict to schedule where
the last machine gives the C,q, value,
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Sort & Search : an application

[Machine 1
Machine 2 Pa(s1)

Machine 3 Ps(s1)

» Let us define dy(s) = P3(s) — Py(s) as the difference between

the load of the last machine and machine 7,
» We have :
» P(s) =34 Pu(s),
* oo Ge(s) = Ty Ge(s) = 3Ps(s) — P(s).
» Without loss of generality we can restrict to schedule where
the last machine gives the C,q, value,
* Now, let us concentrate on the concatenation of two partial
schedules s and o,
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Sort & Search : an application

[Machine 1
Machine 2 Pa(s1)

Machine 3 Ps(s1)

» Let us define dy(s) = P3(s) — Py(s) as the difference between

the load of the last machine and machine 7,
» We have :
o P(s) = 3o, Pu(s),
o Yio1 8e(s) = Yy de(s) = 3Pa(s) — P(s).
» Without loss of generality we can restrict to schedule where
the last machine gives the C,q, value,
* Now, let us concentrate on the concatenation of two partial
schedules s and o,
» We have : Cpaz(50) = mazi<i<z (Pe(s) + Py(0)),
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Sort & Search : an application

)
-

Machine 1

Machine 2

Machine 3

* We can show that the makespan of so is given by the last
machine iff (constraint) :

o Ve [1,2], 6e(s)+ de(o) >0

T'kindt Exponential Algorithms with applications to scheduling
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Sort & Search : an application

* We can show that the makespan of so is given by the last
machine iff (constraint) :

o Ve [1,2], 6e(s)+ de(o) >0

» Then, we have Cp4,(s0) = P3(s) + Ps(o) which can be
rewritten as (objective) :

* Crnaa(s9) = 3 (P(s) + P(0) + iy (0e(s) + 8e(07))).
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Sort & Search : an application

Reformulation

A schedule so is optimal for the P3||Cyuqq problem, iff the couple
(s,0) is an optimal solution of the following problem :
Minimise 23:1 de(s) + 0¢(0)

st. VEe[L,2], du(s)+ e(a) >0

T'kindt Exponential Algorithms with applications to scheduling
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Sort & Search : an application (main lines)

aj = (61(57): 82(s7))

(0, by> b)) = (01(s5) + 02(s3), 0 (s5), 02(s5))

F@@,b0) = (P +61(s]) + d2(s]) + 81(s§) + 02(s5)) /3
au(@, b)) = ou(s]) +o(sh)
(@, bF) = da(s]) + a(sh)
(1)
Besides f, g1 are go increasing function with respect to their last
variable.
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Sort & Search : an application

» The complexity of Sort & Search is in

O(nplogd® (ng) + n4logi ™2 (ng)) time,
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Sort & Search : an application

» The complexity of Sort & Search is in

O(nplogd® (ng) + n4logi ™2 (ng)) time,

» Starting from [; and I, tables A and B have respectively
n4a = ng = 32 columns,
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Sort & Search : an application

» The complexity of Sort & Search is in
O(nplogd® (ng) + n4logi ™2 (ng)) time,

» Starting from [; and I, tables A and B have respectively
ng = ng = 32 columns,

» Besides, dy = 2, and dg = 2
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Sort & Search : an application

» The complexity of Sort & Search is in
O(nplogd® (ng) + n4logi ™2 (ng)) time,

» Starting from nIl and I, tables A and B have respectively
n4a = ng = 32 columns,

» Besides, dy = 2, and dg = 2

» Then, the worst-case time complexity is in
0(3% log3(37) + 3% log(37)) = 0*(32) ~ 0*(1.7321™).
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Sort & Search : to conclude

» Sort & Search is an interesting technique for deriving “quickly”
E-ETA,
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E-ETA,

» Requires exponential space,
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Sort & Search : to conclude

» Sort & Search is an interesting technique for deriving “quickly”
E-ETA,

» Requires exponential space,

* In scheduling, it is usable for parallel machine scheduling
problems.
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» A theoretical and nice research area,
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» A theoretical and nice research area,

» Helps in understanding what makes a problem hard to be
solved,
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» A theoretical and nice research area,

» Helps in understanding what makes a problem hard to be
solved,

» It's emerging in scheduling literature (problems are difficult),
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Time to conclude on E-ETA

» A theoretical and nice research area,

» Helps in understanding what makes a problem hard to be
solved,

It's emerging in scheduling literature (problems are difficult),
With respect to the three techniques introduced in this talk :
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Time to conclude on E-ETA

» A theoretical and nice research area,

» Helps in understanding what makes a problem hard to be
solved,

It's emerging in scheduling literature (problems are difficult),
With respect to the three techniques introduced in this talk :

» Sort & Search seems to be applicable when the combinatorics
is only induced by “assignment decisions”,
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Time to conclude on E-ETA

» A theoretical and nice research area,

» Helps in understanding what makes a problem hard to be
solved,

It's emerging in scheduling literature (problems are difficult),
With respect to the three techniques introduced in this talk :
» Sort & Search seems to be applicable when the combinatorics
is only induced by “assignment decisions”,
» Branch & Reduce and Dynamic Programming are more
suitable for permutation problems,
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Time to conclude on E-ETA

» A theoretical and nice research area,

» Helps in understanding what makes a problem hard to be
solved,

» It's emerging in scheduling literature (problems are difficult),
» With respect to the three techniques introduced in this talk :

» Sort & Search seems to be applicable when the combinatorics
is only induced by “assignment decisions”,

» Branch & Reduce and Dynamic Programming are more
suitable for permutation problems,

« It is challenging to design reduction rules in Branch & Reduce
algorithms.
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About the problem

Definition
Given n jobs : N = {1,...,n}, m parallel identical machines, each
job 7 has a processing time p; and a due date d;. Determine the

job sequence on each machine which minimizes . U;, with
U; = 1if job i is tardy; 0 otherwise.

i =

« Problem denoted by P|d;| )", U;.
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Given n jobs : N = {1,...,n}, m parallel identical machines, each
job 7 has a processing time p; and a due date d;. Determine the

job sequence on each machine which minimizes . U;, with
U; = 1if job i is tardy; 0 otherwise.

« Problem denoted by P|d;| )", U;.
» N'P-hard (Garey and Johnson, 1979), even in the case m = 2.

T'kindt Exponential Algorithms with applications to scheduling 66 / 90



‘m(TdU‘RS o | “® @ Exact or Heuristic Exponential-Time Algorithms

POLYTEGH with applications to scheduling

About the problem

Definition
Given n jobs : N = {1,...,n}, m parallel identical machines, each
job 7 has a processing time p; and a due date d;. Determine the

job sequence on each machine which minimizes ). U;, with
U; = 1if job i is tardy; 0 otherwise.

« Problem denoted by P|d;| )", U;.
« N'P-hard (Garey and Johnson, 1979), even in the case m = 2.

» The question we had : can we approximate optimal solutions
for this problem ?
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About the problem

Definition
Given n jobs : N = {1,...,n}, m parallel identical machines, each
job 7 has a processing time p; and a due date d;. Determine the

job sequence on each machine which minimizes ). U;, with
U; = 1if job i is tardy; 0 otherwise.

« Problem denoted by P|d;| )", U;.
« N'P-hard (Garey and Johnson, 1979), even in the case m = 2.

» The question we had : can we approximate optimal solutions
for this problem ?

» We focus on the approximation ratio of an heuristic H :
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About the problem

» First result : Problem P2|d;| ", U; does not admit a
polynomial-time approximation algorithm with a bounded
ratio p.
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About the problem

» First result : Problem P2|d;| ", U; does not admit a
polynomial-time approximation algorithm with a bounded
ratio p.

* Deciding the existence of a schedule with >, U =0 is
NP-hard.
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About the problem

» First result : Problem P2|d;| ", U; does not admit a
polynomial-time approximation algorithm with a bounded
ratio p.

* Deciding the existence of a schedule with >, U =0 is
NP-hard.

» What can we do if we pay for exponential computation time :

can we approximate in a moderately exponential time the
P|d;| ", U; problem?
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Approximation Algorithms

Generality

For N"P-hard minimization problems, polynomial-time heuristic
algorithms H with a worst-case guarantee :

o Fixed ratio : ZZT; < p and polynomial time in input length,

o PTAS : ZZT; < (14 €) and polynomial time in input length
when € is fixed,

o FPTAS : ZZT; < (1 + €) and polynomial time both in input
length and %
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Generality

For N"P-hard minimization problems, polynomial-time heuristic
algorithms H with a worst-case guarantee :

o Fixed ratio : ZZT; < p and polynomial time in input length,

o PTAS : 2. < (1 + €) and polynomial time in input length

7/ 0pt
when € is fixed,
o FPTAS : ZZT; < (1 + €) and polynomial time both in input
length and %

» A large part of the scheduling literature...
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Approximation Algorithms

Generality

For N"P-hard minimization problems, polynomial-time heuristic
algorithms H with a worst-case guarantee :

o Fixed ratio : ZZT; < p and polynomial time in input length,

PTAS : ZZT; < (14 €) and polynomial time in input length
when € is fixed,
FPTAS : ZZT; < (1 + €) and polynomial time both in input

length and %

A large part of the scheduling literature...

Few works on approximation with moderately exponential
computation time (Sevastianov and Woeginger (1998), Hall
(1998), Jansen (2003))... complexities in f(e, m) + O(p(n)).
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Exact Exponential-Time Algorithms

General objectives

For N"P-hard problems, design exact algorithms with worst-case
running time guarantee.

o Complexity O*(c™), with ¢ a constant as small as possible

Paschos, V. (2015). When polynomial approximation meets exact computation. 4'OR,
13(3) :227-245
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Exact Exponential-Time Algorithms

General objectives

For N"P-hard problems, design exact algorithms with worst-case
running time guarantee.

o Complexity O*(c™), with ¢ a constant as small as possible

* In the remainder, we rely in the framework presented by
Paschos (2015) : find approximation algorithms with wc time
complexity in O*(c™).

Paschos, V. (2015). When polynomial approximation meets exact computation. 4'OR,
13(3) :227-245
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Initial results

Theorem 1

Let ;13, be a deadline associated with j9b , so that in a feasible
schedule job 7 must complete before d;. The existence of a feasible

schedule for the P|d;|— problem can be decided in O*(m?2) time
and space.

[4] C. Lente, M. Liedloff, A. Soukhal and V. T’kindt. On an extension of the Sort & Search method with

application to scheduling theory, Theoretical Computer Science, vol 511, pp. 13-22, 2013.
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Initial results

Theorem 1

Let ;13, be a deadline associated with j9b 1, so that in a feasible
schedule job 7 must complete before d;. The existence of a feasible

schedule for the P|d;|— problem can be decided in O*(m?2) time
and space.

« This result is shown by reformulating the P|d;|]— problem as a
(MCP),

[4] C. Lente, M. Liedloff, A. Soukhal and V. T’kindt. On an extension of the Sort & Search method with

application to scheduling theory, Theoretical Computer Science, vol 511, pp. 13-22, 2013.
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Initial results

Theorem 1

Let ;13, be a deadline associated with j9b 1, so that in a feasible
schedule job 7 must complete before d;. The existence of a feasible

schedule for the P|d;|— problem can be decided in O*(m?2) time
and space.

« This result is shown by reformulating the P|d;|]— problem as a
(MCP),
« We denote by A/ the algorithm solving the P|d;|— problem.

[4] C. Lente, M. Liedloff, A. Soukhal and V. T’kindt. On an extension of the Sort & Search method with

application to scheduling theory, Theoretical Computer Science, vol 511, pp. 13-22, 2013.
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Initial results

Theorem 1

Let ;13, be a deadline associated with j9b 1, so that in a feasible
schedule job 7 must complete before d;. The existence of a feasible

schedule for the P|d;|— problem can be decided in O*(m?2) time
and space.

« This result is shown by reformulating the P|d;|]— problem as a
(MCP),

« We denote by A/ the algorithm solving the P|d;|— problem.

* Lente et al. ([4]) proposed an E-ETA for solving the
P|d;| 3>, U; problem, which requires O*((m 4 1)2) time and
space in the worst case.

[4] C. Lente, M. Liedloff, A. Soukhal and V. T’kindt. On an extension of the Sort & Search method with

application to scheduling theory, Theoretical Computer Science, vol 511, pp. 13-22, 2013.
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A branching heuristic

» We propose a first approximation algorithm, referred to as
Bapprox,
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» We propose a first approximation algorithm, referred to as
Bapprox,

» Let k£ € N* be a given parameter,
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A branching heuristic

» We propose a first approximation algorithm, referred to as
Bapprox,

» Let k£ € N* be a given parameter,
» Wilog, we assume d; < dp < ... < d,,
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A branching heuristic

» We propose a first approximation algorithm, referred to as
Bapprox,

» Let k£ € N* be a given parameter,
» Wilog, we assume d; < dp < ... < d,,

First, A/ is run with d; = d; to check if a solution with
Zj UJ* = () exists,
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with applications to scheduling

A branching heuristic

» We propose a first approximation algorithm, referred to as
Bapprox,

» Let k£ € N* be a given parameter,

» Wilog, we assume d; < dp < ... < d,,

» First, A’ is run with d; = d; to check if a solution with
Zj U =0 exists,

» If not, the n jobs are grouped into

Each batch By contains jobs {(¢ —
1<e< 3]

xk+1,.., 0k},
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Algorithm outline

» Algorithm Bapprox builds a binary search tree by branching at
each level ¢ on batch B, and scheduling all its jobs either early

of tardy.
root node
jobs in By are early jobs in By are tardy
jobs in B
are early
T'kindt Exponential Algorithms with applications to scheduling
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Algorithm outline

» Algorithm Bapprox builds a binary search tree by branching at
each level ¢ on batch B, and scheduling all its jobs either early

of tardy.

root node

jobs in Bj are early jobs in Bj are tardy

jobs in By

» Each leaf node s defines a set of possible early jobs E, the

remaining jobs being tardy.
Algorithm A/ is run to check if there exists a feasible schedule

with jobs in FE; all early.
= Vi E,,d; = d;, and Vi € N\E,, d; = +o0
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Algorithm outline

Exercice.

Apply Bapprox on the following instance :
n=4, m=2, [p]. =[5;4;3;6], [di]: = [4;8;9; 10].
Find the optimal solution and provide the ratio on this example.
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Algorithm outline

» Branch and evaluate all leaf nodes,

'b::{MS
Do = {s,ug

Onem N e

| @A’L: {A/ L’Swe\( = .A:H,’(M(Q)(L

(©ay= PGy = pendle, Zybo= 1Bl L
L Or= ¥ Q""‘VPY 757 Jean e , Z_"U;} (o) = IDe 1B, [ =4
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Algorithm outline

Branch and evaluate all leaf nodes,

'b::{MS

Do = {s,ug

®sa= (415 ey oo nfean e

O {4 ety o earble
L ’S ' i—&(g =Y b= 1341z L

JEY 5
@ﬂu, $ ealy 4“'»5(1 Zy; {AO l’M*[%! “[

» The solution returned is s3 W|th {3;4} early and {1 2} tardy,
and ), Ui(s3) =2,
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Algorithm outline

» Branch and evaluate all leaf nodes,

D=} T

Do = {s,ug

®sa= (415 ey oo nfean e

©A7~ {A L’Sw? = i feanble
@)5, {B kStMrY = %i&h, ZU (/’5) |B4[ L

@ﬂu, $ ealy 4“'»5(1 Zy; {AO l’M*[%! “[

» The solution returned is s3 W|th {3;4} early and {1 2} tardy,
and ), Ui(s3) =2,
» The optimal solution is s* with {2;3;4} early and {1} tardy,

and >, U;j(s*) =1,
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Algorithm outline

» Branch and evaluate all leaf nodes,

D=} T

Do = {s,ug

A
®sa= (415 ey oo nfean e

Oz %wey = infeanble
(®y= 2 el = g, Zybo= 1Bl L
@pu, # tonly D’#M(t Zy; {m !ml»m! H

» The solution returned is s3 W|th {3;4} early and {1 2} tardy,
and ), Ui(s3) =2,

» The optimal solution is s* with {2;3;4} early and {1} tardy,
and >, U;i(s*) = 1

« Here, the ratiois 2 = ...7
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Analysis

Theorem 2
Algorithm Bapprox admits a worst-case ratio p < k (tight).

Algorithm Bapprox requires O*((1 + m%)%) time and O*(m?)
space.
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Analysis

Theorem 2
Algorithm Bapprox admits a worst-case ratio p < k (tight).

Algorithm Bapprox requires O*((1 + m%)%) time and O*(m?)
space.

* Proof (sketch) : Ratio.
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Analysis

Theorem 2
Algorithm Bapprox admits a worst-case ratio p < k (tight).

Algorithm Bapprox requires O*((1 + m%)%) time and O*(m?)
space.

* Proof (sketch) : Ratio.

» Assume « batches are scheduled tardy by Bapprox,

T'kindt Exponential Algorithms with applications to scheduling



UT st o | “® @ Exact or Heuristic Exponential-Time Algorithms

POLYTEGH with applications to scheduling

Analysis

Theorem 2
Algorithm Bapprox admits a worst-case ratio p < k (tight).

Algorithm Bapprox requires O*((1 + m%)%) time and O*(m?)
space.

* Proof (sketch) : Ratio.

» Assume « batches are scheduled tardy by Bapprox,
« But what is the situation in an optimal schedule ?
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Analysis

WTosse 0D 11D

Theorem 2

Algorithm Bapprox admits a worst-case ratio p < k (tight).

Algorithm Bapprox requires O*((1 + m%)%) time and O*(m?)
space.

* Proof (sketch) : Ratio.

» Assume « batches are scheduled tardy by Bapprox,
« But what is the situation in an optimal schedule ?

« If Bapprox is not optimal then some tardy jobs are early in the
optimal solution,

T'kindt Exponential Algorithms with applications to scheduling
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Analysis

Theorem 2

Algorithm Bapprox admits a worst-case ratio p < k (tight).

Algorithm Bapprox requires O*((1 + m%)%) time and O*(m?)
space.

* Proof (sketch) : Ratio.

» Assume « batches are scheduled tardy by Bapprox,

« But what is the situation in an optimal schedule ?

« If Bapprox is not optimal then some tardy jobs are early in the
optimal solution,

» For each of these batches u, in the optimal solution, only
£, > 1 jobs are tardy,
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Analysis

Theorem 2
Algorithm Bapprox admits a worst-case ratio p < k (tight).

Algorithm Bapprox requires O*((1 + m%)%) time and O*(m?)
space.

* Proof (sketch) : Ratio.

» Assume « batches are scheduled tardy by Bapprox,

« But what is the situation in an optimal schedule ?

« If Bapprox is not optimal then some tardy jobs are early in the
optimal solution,

» For each of these batches u, in the optimal solution, only
£, > 1 jobs are tardy,

ak
« Then, p < <,

u=1 ‘u
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Analysis

Theorem 2
Algorithm Bapprox admits a worst-case ratio p < k (tight).

Algorithm Bapprox requires O*((1 + m%)%) time and O*(m?)
space.

* Proof (sketch) : Ratio.

» Assume « batches are scheduled tardy by Bapprox,

« But what is the situation in an optimal schedule ?

« If Bapprox is not optimal then some tardy jobs are early in the
optimal solution,

» For each of these batches u, in the optimal solution, only
£, > 1 jobs are tardy,

" < ak
Then, p < s 7

« The ratio is maximum when 23:1

ly=a=p<k.
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Analysis

Theorem 2

Algorithm Bapprox admits a worst-case ratio p < k (tight).

Algorithm Bapprox requires O*((1 + m%)%) time and O*(m?2)
space.

» Proof : worst-case time complexity.
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Analysis

Theorem 2

Algorithm Bapprox admits a worst-case ratio p < k (tight).

Algorithm Bapprox requires O*((1 + m%)%) time and O*(m?2)
space.

» Proof : worst-case time complexity.
« Initial (feasibility) step requires O*(m?2) time.
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Analysis

Theorem 2

Algorithm Bapprox admits a worst-case ratio p < k (tight).

Algorithm Bapprox requires O*((1 + m%)%) time and O*(m?2)
space.

» Proof : worst-case time complexity.
« Initial (feasibility) step requires O*(m?) time.
» Let LN be the list of all leaf nodes generated. A leaf node can
be represented by (E; T') two sets of early and tardy jobs.
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Analysis

Theorem 2
Algorithm Bapprox admits a worst-case ratio p < k (tight).

Algorithm Bapprox requires O*((1 + m%)%) time and O*(m?2)
space.

» Proof : worst-case time complexity.
« Initial (feasibility) step requires O*(m?) time.
» Let LN be the list of all leaf nodes generated. A leaf node can
be represented by (FE; T) two sets of early and tardy jobs.

« We have : |[LN]| = ([ W)

T'kindt Exponential Algorithms with applications to scheduling
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Analysis

Theorem 2
Algorithm Bapprox admits a worst-case ratio p < k.

Algorithm Bapprox requires O*((1 + m >)"~) time and O*(m?2)
space.

» Proof : worst-case time complexity.
15|

» V(E; T) € LN, deciding of the feasibility requires O*(m T)
time, with |E| = k£ and ¢ the number of early batches in
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Analysis
Theorem 2

Algorithm Bapprox admits a worst-case ratio p < k.

Algorithm Bapprox requires O*((1 + mg)%) time and O*(m?2)
space.

» Proof : worst-case time complexity.
« V(E; T) € LN, deciding of the feasibility requires (’)*(m%l)
time, with |E| = k¢ and ¢ the number of early batches in E.
« It follows that to build and test all leaf nodes the worst-case
running time is in :
w R (T E
O"(Sedo ('F1) (m2)")
& O (14 m2)¥),
by making use of the Newton's binomial formula.
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Analysis

Theorem 2
Algorithm Bapprox admits a worst-case ratio p < k.

n

Algorithm Bapprox requires O*((1 + m%)k) time and O*(m?2)
space.

« lllustration (ratios and complexities) in the case m =2 :

k. p time

1 1 0(241427)
2 2  0(1.7320™)
3 3 0(1.5643™)
4 4 0(1.4953")
5 5 0(1.4610™)

10 10 O(1.4186")
Noteworthy, by comparison with the EETA running in
0O(1.7320™) time, algorithm Bapprox is relevant for k > 3.

T'kindt Exponential Algorithms with applications to scheduling
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Branching and preprocessing

» How to decrease the ratio p of algorithm Bapprox ?
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Branching and preprocessing

» How to decrease the ratio p of algorithm Bapprox ?

» We add a preprocessing step (algorithm PBapprox).

T'kindt Exponential Algorithms with applications to scheduling



UT st o | ||® @ Exact or Heuristic Exponential-Time Algorithms

POLYTEGH with applications to scheduling

Branching and preprocessing

» How to decrease the ratio p of algorithm Bapprox ?
» We add a preprocessing step (algorithm PBapprox).

» Let us introduce a parameter ¢ € N*,
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Branching and preprocessing

» How to decrease the ratio p of algorithm Bapprox ?
» We add a preprocessing step (algorithm PBapprox).
» Let us introduce a parameter ¢ € N*,

» The preprocessing generates all possible subsets of at most
| %] tardy jobs among n and then, for each, solve the
feasibility problem on the remaining jobs.
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Branching and preprocessing

» How to decrease the ratio p of algorithm Bapprox ?

» We add a preprocessing step (algorithm PBapprox).

» Let us introduce a parameter ¢ € N*,

» The preprocessing generates all possible subsets of at most
| %] tardy jobs among n and then, for each, solve the
feasibility problem on the remaining jobs.

» If at least one of these subsets lead to a feasible schedule,
then the optimal solution of the P|d;| >, U; problem is
found. Otherwise, algorithm Bapprox is used (on each subset
of size (n — [2])).

C
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Analysis

Theorem 3

k24+k(c—1)+1

Algorithm PBapprox admits a worst-case ratio p < T
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Analysis

Theorem 4
Algorithm PBapprox requires

o* (max(?H(“)”m T (ce)e(1+ m,%) e )) time,

H(c) = —clogy(c) — (1 — ¢)logs(1 — ¢) and e is Euler's number.
4 1)

The worst-case space requirement is in O*(m

» Proof : worst-case time complexity.

T'kindt Exponential Algorithms with applications to scheduling 81 /90
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Analysis

Theorem 4
Algorithm PBapprox requires

1(c—1) n : n(c—1)
o* max(?H(“)”’mI 2 ;(ce)?(l—l-m%)] ok )) time,

H(c) = —clogy(c) — (1 — ¢)logs(1 — ¢) and e is Euler's number.
. .. n(c=1)
The worst-case space requirement is in O*(m e ).

» Proof : worst-case time complexity.
» The preprocessing phase : generation of subsets of size at
most || tardy jobs and solution of feasibility problems on
the early jobs. Worst-case running time :
[ %)
O*(XiZo ()m

n—i

).
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Analysis

Theorem 4
Algorithm PBapprox requires

n(c—1 n : n(c—1) .
o* (111&x(2H(“)71'7n, 2 );(ce)?(l +m%) ok )) time,

H(c) = —clogy(c) — (1 — ¢)logs(1 — ¢) and e is Euler's number.
. L. n(e—1)
The worst-case space requirement is in O*(m = ).

» Proof : worst-case time complexity.
» The preprocessing phase : generation of subsets of size at
most || tardy jobs and solution of feasibility problems on
the early jobs. Worst-case running time :
[ %)
O*(XiZo ()m

» This is a partial sum of binomials!

n—i

=
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Analysis

Theorem 4
Algorithm PBapprox requires

or (ma,x(QH(C)"‘m T s (ce)e (1+ mg) e )) time,

H(c) = —clogy(c) — (1 — ¢)logy(1 — ¢) and e is Euler's number.
n(c—1)
The worst-case space requirement is in O*(m 5o )).

» Proof : worst-case time complexity.
* No close formula, use of an upper bound :
V; 2
>i—0 (?) < 2ftom,
with H(£) = —£logy(£) — (1 - £)logy,(1 - £), 0< £ < 1,
the binary entropy of %.
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Analysis

Theorem 4
Algorithm PBapprox requires
ee1)

on n(c—1)

o* (ma,x(QH(C)"m i (ce)e (14 m%) ck )) time,

H(c) = —clogy(c) — (1 — ¢)logy(1l — ¢) and e is Euler's number.
n(c—1)
The worst-case space requirement is in O*(m 5o ).

» Proof : worst-case time complexity.

» We obtain the following reformulation :
n(c—1)

SEI T <2 0) xmtE
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Analysis

Theorem 4
Algorithm PBapprox requires

n(c—1)

“( max 2 (ce)e —I-m% e time,
O* 9H(c)n 1 ;

H(c) = —clogy(c) — (1 — ¢)logy(1l — ¢) and e is Euler's number.
n(c—1)
The worst-case space requirement is in O*(m e ).

» Proof : worst-case time complexity.

» We obtain the following reformulation :
n(c—1)

<3 1) x %

n—i

i (Mym'

» The preprocessing phase has a worst-case time complexity in
n(c—1)

O*(2H O 55,
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or (1lla,x(2H(C)77‘772, T ;(ce)e(1+ m%) T )) time,

H(c) = —clogy(c) — (1 — ¢)logy(l —¢) and e is Euler's number.
The worst-case space requirement is in O*(m n(c—1)

» Proof : worst-case time complexity.

T'kindt Exponential Algorithms with applications to scheduling 84 /90



@ Exact or Heuristic Exponential-Time Algorithms

OURS  poyyrecn l ll@ with applications to scheduling

Analysis

Theorem 4
Algorithm PBapprox requires

1)

o* (ma,x(QH O e (ce)e (1 —|—m%)n(ik_-l))) time,
H(c) = —clogy(c) — (1 — ¢)logy(1l — ¢) and e is Euler's number.

. L. n(c—1)
The worst-case space requirement is in O*(m ™~ 2 ).

» Proof : worst-case time complexity.

The branching phase : algorithm Bapprox requires

n

(’)*((1+m2) L J) time.

T'kindt Exponential Algorithms with applications to scheduling



1) o I ||® @ Exact or Heuristic Exponential-Time Algorithms

POLYTEGH with applications to scheduling

Analysis

Theorem 4
Algorithm PBapprox requires

1)

o* (ma,x(QH O e (ce)e (1 —|—7n%)n(f;1))) time,

H(c) = —clogy(c) — (1 — ¢)logy(1 — ¢) and e is Euler's number.
The worst-case space requirement is in O*(m o ).

» Proof : worst-case time complexity.

» The branching phase : algorithm Bapprox requires

n

(’)*((1+m2) L J) time.

» The branching phase has a worst-case running time in :

O (((2)) (1 +m5) ).
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Analysis

Theorem 4
Algorithm PBapprox requires

n(c—1) n(c—1)

o* (max(2H(C)”m 2 s (ce) (1 +m‘k5) oF ))) time,

H(c) = —clogy(c) — (1 — ¢)logy(1l — ¢) and e is Euler’'s number.
The worst-case space requirement is in O*(m

» Proof : worst-case time complexity.
. N NEK : v
» By noting that (K) < “x— with e being Euler's number, we

obtain :
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Analysis

Theorem 4
Algorithm PBapprox requires

n(c—1) n ;. n(c—1) )
O* (max(2H(C)”m e );(ce)?(l +m%) ok ))) time,

H(c) = —clogy(c) — (1 — ¢)logy(1 — ¢) and e is Euler's number.
. - n(c—1)
The worst-case space requirement is in O*(m ™ 2c ).

» Proof : worst-case time complexity.

» By noting that (%) < N;((EK with e being Euler's number, we
obtain :
"_LLCLJ n n(c—1)
(E)a+mb) =" < (@pHa+mb) T

k. n(c—1)

< (ce)%(l + mé) o
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Analysis

Theorem 4
Algorithm PBapprox requires

n(c—1) n ;. n(c—1) )
O* (max(2H(C)”m e );(ce)?(l +m%) ok ))) time,

H(c) = —clogy(c) — (1 — ¢)logy(1l — ¢) and e is Euler’'s number.
, - n(c—1)
The worst-case space requirement is in O*(m ™ 2c ).

» Proof : worst-case time complexity.

E K _K

» By noting that (%) < NKE
obtain :

(L%)(l—i-m

with e being Euler's number, we

k "_LLCLJ k. n(c=1)
2

< @)+ mb) 5
¢ k. n(c—1)

< (ce)%(l + mf) ok
» Finally, we have the worst-case time complexity stated in the
theorem.
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» lllustration (ratios and complexities) in the case m =2 :
k p time
I 1 O(241427)
2 2 0(1.7320")
=
5 5 0(1.4610")
10 10 O(1.4186")
k @ p time
3 1000 2.99 O(1.5760™)
100 2.98 O(1.6471")
10 284 0(2.0813")
4 1000 3.99 O(1.5066™)
100 3.97 O(1.5752")
10 3.78  0(1.9984")
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Generalizations

» Weighted case : P|d;| ), w; U;,

» Algorithm Bapprox can be generalized by changing the
branching scheme (and making the wct analysis more
complicated),

root node
.

job 1 s early . jobs {1,....k} are tardy

jobs in
{(k+1,..,2
are tardy

.
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Generalizations

» Weighted case : P|d;| ), w; U;,

» Algorithm Bapprox can be generalized by changing the
branching scheme (and making the wct analysis more
complicated),

root node
.

job 1 s early . jobs {1,....k} are tardy

jobs in
{k+

* Ratio: p=k,
« Worst-case time complexity : O*(y") time and O*(m?)
space, with v = m3 and y_k e 7—1+5 = il
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Conclusions

» The P|d;| >, U; problem can be approximated by moderately
exponential-time algorithms,

» Algorithm Bapprox : a branching-based heuristic,

» Algorithme PBapprox : improvement by adding a
preprocessing phase,

» Need for improving the analysis of the worst-case time
complexity of PBapprox,

» Can we handle a reduction of ratio p = k directly in the
branching scheme ?

» Can we generalize this approach to other scheduling problems
with number of tardy jobs ?
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Conclusions

» Exponential Time Algorithms provide us with worst-case
information,

» Ok, finding ETA with reduced worst-case complexities is a
challenging (theoretical) issue,

» Apparently, there is also a room for strong computational
impacts,

» The idea : take advantage of decomposition approaches of
ETA, embed problem-dependent knowledge,

» You may get efficient exact algorithms...

» ... even more with polynomial space ETA'!
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