
Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

V T’kindt

tkindt@univ-tours.fr, Université Francois-Rabelais, CNRS, Tours, France

June 2019

T’kindt Exponential Algorithms with applications to scheduling 1 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

1 Introduction

2 Exact Exponential-Time Algorithms
Technique 1 : Dynamic Programming
Technique 2 : Branch-and-Reduce
Technique 3 : Sort&Search

3 Heuristic Exponential-Time Algorithms

4 Conclusions

T’kindt Exponential Algorithms with applications to scheduling 2 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

1 Introduction

2 Exact Exponential-Time Algorithms

3 Heuristic Exponential-Time Algorithms

4 Conclusions

T’kindt Exponential Algorithms with applications to scheduling 3 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

What is called an “exponential algorithm”?....

For a NP-hard problem, an exact or heuristic algorithm for
which the worst-case (time/space) complexity can be
computed,

An Exact Exponential-Time Algorithm (E-ETA) provides an
optimal solution to the problem,

A Heuristic Exponential-Time Algorithm (H-ETA) provides a
solution which worst-case quality can be bounded
(approximation algorithm).

T’kindt Exponential Algorithms with applications to scheduling 4 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

What is called an “exponential algorithm”?....

For a NP-hard problem, an exact or heuristic algorithm for
which the worst-case (time/space) complexity can be
computed,

An Exact Exponential-Time Algorithm (E-ETA) provides an
optimal solution to the problem,

A Heuristic Exponential-Time Algorithm (H-ETA) provides a
solution which worst-case quality can be bounded
(approximation algorithm).

T’kindt Exponential Algorithms with applications to scheduling 4 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

What is called an “exponential algorithm”?....

For a NP-hard problem, an exact or heuristic algorithm for
which the worst-case (time/space) complexity can be
computed,

An Exact Exponential-Time Algorithm (E-ETA) provides an
optimal solution to the problem,

A Heuristic Exponential-Time Algorithm (H-ETA) provides a
solution which worst-case quality can be bounded
(approximation algorithm).

T’kindt Exponential Algorithms with applications to scheduling 4 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

What is called an “exponential algorithm”?....

For a NP-hard problem, an exact or heuristic algorithm for
which the worst-case (time/space) complexity can be
computed,

An Exact Exponential-Time Algorithm (E-ETA) provides an
optimal solution to the problem,

A Heuristic Exponential-Time Algorithm (H-ETA) provides a
solution which worst-case quality can be bounded
(approximation algorithm).

T’kindt Exponential Algorithms with applications to scheduling 4 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About E-ETA :

An E-ETA is not intended to be good in practice (E-ETA vs
Branch-and-Bound algorithms),
What happen in the worst-case is the matter of E-ETA,
Find “theoretical” algorithms with worst-case time/space upper
bounds as low as possible...
The MIS problem has been shown to be solvable O∗(2n) in 1977, O∗(1.381n) in 1999,

O∗(1.2201n) in 2009, ...

NB : O∗(exp(n)) = O(poly(n)exp(n))

In the future, E-ETA will start to beat in practice heuristics ?
1.2201n is smaller than n4 for n ≤ 90,

1.1n is faster than n4 for n ≤ 230,

Provide a quantitative information on the difficulty of a
NP-hard problem,

T’kindt Exponential Algorithms with applications to scheduling 5 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About E-ETA :

An E-ETA is not intended to be good in practice (E-ETA vs
Branch-and-Bound algorithms),
What happen in the worst-case is the matter of E-ETA,
Find “theoretical” algorithms with worst-case time/space upper
bounds as low as possible...
The MIS problem has been shown to be solvable O∗(2n) in 1977, O∗(1.381n) in 1999,

O∗(1.2201n) in 2009, ...

NB : O∗(exp(n)) = O(poly(n)exp(n))

In the future, E-ETA will start to beat in practice heuristics ?
1.2201n is smaller than n4 for n ≤ 90,

1.1n is faster than n4 for n ≤ 230,

Provide a quantitative information on the difficulty of a
NP-hard problem,

T’kindt Exponential Algorithms with applications to scheduling 5 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About E-ETA :

An E-ETA is not intended to be good in practice (E-ETA vs
Branch-and-Bound algorithms),
What happen in the worst-case is the matter of E-ETA,
Find “theoretical” algorithms with worst-case time/space upper
bounds as low as possible...
The MIS problem has been shown to be solvable O∗(2n) in 1977, O∗(1.381n) in 1999,

O∗(1.2201n) in 2009, ...

NB : O∗(exp(n)) = O(poly(n)exp(n))

In the future, E-ETA will start to beat in practice heuristics ?
1.2201n is smaller than n4 for n ≤ 90,

1.1n is faster than n4 for n ≤ 230,

Provide a quantitative information on the difficulty of a
NP-hard problem,

T’kindt Exponential Algorithms with applications to scheduling 5 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About E-ETA :

An E-ETA is not intended to be good in practice (E-ETA vs
Branch-and-Bound algorithms),
What happen in the worst-case is the matter of E-ETA,
Find “theoretical” algorithms with worst-case time/space upper
bounds as low as possible...
The MIS problem has been shown to be solvable O∗(2n) in 1977, O∗(1.381n) in 1999,

O∗(1.2201n) in 2009, ...

NB : O∗(exp(n)) = O(poly(n)exp(n))

In the future, E-ETA will start to beat in practice heuristics ?
1.2201n is smaller than n4 for n ≤ 90,

1.1n is faster than n4 for n ≤ 230,

Provide a quantitative information on the difficulty of a
NP-hard problem,

T’kindt Exponential Algorithms with applications to scheduling 5 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About E-ETA :

An E-ETA is not intended to be good in practice (E-ETA vs
Branch-and-Bound algorithms),
What happen in the worst-case is the matter of E-ETA,
Find “theoretical” algorithms with worst-case time/space upper
bounds as low as possible...
The MIS problem has been shown to be solvable O∗(2n) in 1977, O∗(1.381n) in 1999,

O∗(1.2201n) in 2009, ...

NB : O∗(exp(n)) = O(poly(n)exp(n))

In the future, E-ETA will start to beat in practice heuristics ?
1.2201n is smaller than n4 for n ≤ 90,

1.1n is faster than n4 for n ≤ 230,

Provide a quantitative information on the difficulty of a
NP-hard problem,

T’kindt Exponential Algorithms with applications to scheduling 5 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About E-ETA :

An E-ETA is not intended to be good in practice (E-ETA vs
Branch-and-Bound algorithms),
What happen in the worst-case is the matter of E-ETA,
Find “theoretical” algorithms with worst-case time/space upper
bounds as low as possible...
The MIS problem has been shown to be solvable O∗(2n) in 1977, O∗(1.381n) in 1999,

O∗(1.2201n) in 2009, ...

NB : O∗(exp(n)) = O(poly(n)exp(n))

In the future, E-ETA will start to beat in practice heuristics ?
1.2201n is smaller than n4 for n ≤ 90,

1.1n is faster than n4 for n ≤ 230,

Provide a quantitative information on the difficulty of a
NP-hard problem,

T’kindt Exponential Algorithms with applications to scheduling 5 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About H-ETA :

For a given heuristic H we compute a worst-case ratio ρ :
Z H

Z Opt ≤ ρ,
H-ETA are relevant for problems that cannot be approximated
(bounded ratio) in polynomial time,
The MIS problem cannot be approximated in polynomial time within ratio nε−1, ∀ε > 0

(Zuckerman, 2006).

The MIS problem can be approximated in O∗(γρn) time within ratio ρ ≤ 1 by using an E-ETA

running in O∗(γn) time ([0]).

Pay for an exponential time to get a guarantee on the quality
(but pay less than to solve to optimality),

[0] N. Bourgeois, B. Escoffier, V. Paschos (2011). Approximation of Max Independent Set, Min Vertex Cover and

related problems by moderately exponential algorithms, Discrete Applied Mathematics, 159(17) : 1954-1970

T’kindt Exponential Algorithms with applications to scheduling 6 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About H-ETA :

For a given heuristic H we compute a worst-case ratio ρ :
Z H

Z Opt ≤ ρ,
H-ETA are relevant for problems that cannot be approximated
(bounded ratio) in polynomial time,
The MIS problem cannot be approximated in polynomial time within ratio nε−1, ∀ε > 0

(Zuckerman, 2006).

The MIS problem can be approximated in O∗(γρn) time within ratio ρ ≤ 1 by using an E-ETA

running in O∗(γn) time ([0]).

Pay for an exponential time to get a guarantee on the quality
(but pay less than to solve to optimality),

[0] N. Bourgeois, B. Escoffier, V. Paschos (2011). Approximation of Max Independent Set, Min Vertex Cover and

related problems by moderately exponential algorithms, Discrete Applied Mathematics, 159(17) : 1954-1970

T’kindt Exponential Algorithms with applications to scheduling 6 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About H-ETA :

For a given heuristic H we compute a worst-case ratio ρ :
Z H

Z Opt ≤ ρ,
H-ETA are relevant for problems that cannot be approximated
(bounded ratio) in polynomial time,
The MIS problem cannot be approximated in polynomial time within ratio nε−1, ∀ε > 0

(Zuckerman, 2006).

The MIS problem can be approximated in O∗(γρn) time within ratio ρ ≤ 1 by using an E-ETA

running in O∗(γn) time ([0]).

Pay for an exponential time to get a guarantee on the quality
(but pay less than to solve to optimality),

[0] N. Bourgeois, B. Escoffier, V. Paschos (2011). Approximation of Max Independent Set, Min Vertex Cover and

related problems by moderately exponential algorithms, Discrete Applied Mathematics, 159(17) : 1954-1970

T’kindt Exponential Algorithms with applications to scheduling 6 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About H-ETA :

For a given heuristic H we compute a worst-case ratio ρ :
Z H

Z Opt ≤ ρ,
H-ETA are relevant for problems that cannot be approximated
(bounded ratio) in polynomial time,
The MIS problem cannot be approximated in polynomial time within ratio nε−1, ∀ε > 0

(Zuckerman, 2006).

The MIS problem can be approximated in O∗(γρn) time within ratio ρ ≤ 1 by using an E-ETA

running in O∗(γn) time ([0]).

Pay for an exponential time to get a guarantee on the quality
(but pay less than to solve to optimality),

[0] N. Bourgeois, B. Escoffier, V. Paschos (2011). Approximation of Max Independent Set, Min Vertex Cover and

related problems by moderately exponential algorithms, Discrete Applied Mathematics, 159(17) : 1954-1970

T’kindt Exponential Algorithms with applications to scheduling 6 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

In this talk...

We first tackle E-ETA providing several techniques that can
be applied successfully applied to scheduling problems,

Next, we tackle H-ETA and first applications to scheduling
problems.

T’kindt Exponential Algorithms with applications to scheduling 7 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

In this talk...

We first tackle E-ETA providing several techniques that can
be applied successfully applied to scheduling problems,

Next, we tackle H-ETA and first applications to scheduling
problems.

T’kindt Exponential Algorithms with applications to scheduling 7 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

1 Introduction

2 Exact Exponential-Time Algorithms
Technique 1 : Dynamic Programming
Technique 2 : Branch-and-Reduce
Technique 3 : Sort&Search

3 Heuristic Exponential-Time Algorithms

4 Conclusions

T’kindt Exponential Algorithms with applications to scheduling 8 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

A lot of works on graph or decision problems (70’s, 2000-),

3-SAT : O∗(1.3211n) time (Iwama et al., 2010),
Hamiltonian circuit : O∗(1.657n) time (Bjorklund, 2010),
MIS : O∗(1.2132n) time (Kneis et al, 2009),
List coloring : O∗(2n) time (Bjorklund and Husfeldt, 2006)
and (Koivisto, 2006),
...

A growing interest since ≈ 2005 in scheduling literature,

T’kindt Exponential Algorithms with applications to scheduling 9 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

A lot of works on graph or decision problems (70’s, 2000-),

3-SAT : O∗(1.3211n) time (Iwama et al., 2010),
Hamiltonian circuit : O∗(1.657n) time (Bjorklund, 2010),
MIS : O∗(1.2132n) time (Kneis et al, 2009),
List coloring : O∗(2n) time (Bjorklund and Husfeldt, 2006)
and (Koivisto, 2006),
...

A growing interest since ≈ 2005 in scheduling literature,

T’kindt Exponential Algorithms with applications to scheduling 9 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

A lot of works on graph or decision problems (70’s, 2000-),

3-SAT : O∗(1.3211n) time (Iwama et al., 2010),
Hamiltonian circuit : O∗(1.657n) time (Bjorklund, 2010),
MIS : O∗(1.2132n) time (Kneis et al, 2009),
List coloring : O∗(2n) time (Bjorklund and Husfeldt, 2006)
and (Koivisto, 2006),
...

A growing interest since ≈ 2005 in scheduling literature,

T’kindt Exponential Algorithms with applications to scheduling 9 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

What about scheduling problems (single machine) ?
Problem brute force wctc wcsc Reference

1|dec|fmax O∗(n!) O∗(2n) exp [1]
1|dec|

∑
i fi O∗(n!) O∗(2n) exp [1]

1|prec|
∑

i Ci O∗(n!) O∗((2− ε)n) exp [2]
1|prec|

∑
i wiCi O∗(n!) O∗(2n) exp [3]

1|di |
∑

i wiUi O∗(n!) O∗(2n) exp [3]
O∗(1.4142n) exp [4]

1|di |
∑

i Ti O∗(n!) O∗(2n) exp [3] & [4]
1|di |

∑
i wiTi O∗(n!) O∗(2n) poly [5]

1|ri , prec|
∑

i wiCi O∗(n!) O∗(3n) exp [3] & [4]

[1] F. Fomin, D. Kratsch (2010). Exact Exponential Algorithms, Springer.

[2] M. Cygan, M. Philipczuk, M. Philipczuk, J. Wojtaszczyk (2011). Scheduling partially ordered jobs faster than

2n , Proceedings of 19th Annual European Symposium (ESA 2011), Lecture Notes in Computer Science, vol. 6942,

pp. 299-310.

[3] G. Woeginger (2003). Exact algorithms for NP-hard problems : A survey, in M. Junger, G. Reinelt, G. Rinaldi

(Eds) : Combinatorial Optimization – Eureka I shrink !, Springer, LNCS 2570.

[4] C. Lenté, M. Liedloff, A. Soukhal, V.T’kindt (2013). On an extension of the Sort & Search method with

application to scheduling theory, Theoretical Computer Science, 511, pp 13-22.

[5] M. Garraffa, L. Shang, F. Della Croce, V. T’Kindt (2018). An exact exponential branch-and-merge algorithm for

the single machine tardiness problem. Theoretical Computer Science, 745, 133-149.

T’kindt Exponential Algorithms with applications to scheduling 10 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

What about scheduling problems (others) ?
Problem brute force wctc wcsc Reference

P |dec|fmax O∗(mnn!) O∗(3n) exp [4]
P |dec|

∑
i fi O∗(mnn!) O∗(3n) exp [4]

P4||Cmax O∗(4n) O∗(2.4142n) exp [4]
P3||Cmax O∗(3n) O∗(1.7321n) exp [4]
P2||Cmax O∗(2n) O∗(1.4142n) exp [4]

P2|di |
∑

i wiUi O∗(3n) O∗(1.7321n) exp [4]

F2||C k
max O∗(2n) O∗(1.4142n) exp [4]

F3||Cmax O∗(n!) O∗(3n) exp [6]
F3||fmax O∗(n!) O∗(5n) exp [6]
F3||

∑
i fi O∗(n!) O∗(5n) exp [6]

J2||C k
max O∗(2n) O∗(1.4142n) exp [7]

[4] C. Lenté, M. Liedloff, A. Soukhal, V.T’kindt (2013). On an extension of the Sort & Search method with

application to scheduling theory, Theoretical Computer Science, 511, pp 13-22.

[6] L. Shang, C. Lenté, M. Liedloff, V.T’kindt (2018). An exponential dynamic programming algorithm for the

3-machine flowshop scheduling problem to minimize the makespan, Journal of Scheduling, 21(2) :227-233.

[7] F. Della Croce, C. Koulamas, V.T’kindt (2016). A constraint generation approach for two-machine shop

problems with jobs selection, Eur. J. Oper. Research, submitted.

T’kindt Exponential Algorithms with applications to scheduling 11 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

We focus on three technics with application to scheduling :

Dynamic programming,
Branch-and-merge,
Sort&Search.

T’kindt Exponential Algorithms with applications to scheduling 12 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

Let us consider the 1||fmax scheduling problem,

n jobs to be processed by a single machine. Each job i is
defined by :

a processing time pi ,
a non decreasing cost function fi depending on Ci ,
Goal : Find the permutation which minimizes fmax = maxi fi .

The worst-case complexity of ENUM...is in O∗(n!).

T’kindt Exponential Algorithms with applications to scheduling 13 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

Let us consider the 1||fmax scheduling problem,

n jobs to be processed by a single machine. Each job i is
defined by :

a processing time pi ,
a non decreasing cost function fi depending on Ci ,
Goal : Find the permutation which minimizes fmax = maxi fi .

The worst-case complexity of ENUM...is in O∗(n!).

T’kindt Exponential Algorithms with applications to scheduling 13 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

Let us consider the 1||fmax scheduling problem,

n jobs to be processed by a single machine. Each job i is
defined by :

a processing time pi ,
a non decreasing cost function fi depending on Ci ,
Goal : Find the permutation which minimizes fmax = maxi fi .

The worst-case complexity of ENUM...is in O∗(n!).

T’kindt Exponential Algorithms with applications to scheduling 13 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

Let be S ⊆ {1, . . . ,n},
Let Opt [S] be the recurrence function calculated on set S :
Opt [S] is equal to the minimal value of criterion maxi fi for
any permutation of the jobs in S .

We have :
Opt [∅] = −∞, if ft can be negative
Opt [∅] = 0, if ft cannot be negative
Opt [S] = mint∈S{max

(
Opt [S − {t}]; ft(P(S))

)
}

with P(S) =
∑

i∈S pi .

T’kindt Exponential Algorithms with applications to scheduling 14 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

Let be S ⊆ {1, . . . ,n},
Let Opt [S] be the recurrence function calculated on set S :
Opt [S] is equal to the minimal value of criterion maxi fi for
any permutation of the jobs in S .

We have :
Opt [∅] = −∞, if ft can be negative
Opt [∅] = 0, if ft cannot be negative
Opt [S] = mint∈S{max

(
Opt [S − {t}]; ft(P(S))

)
}

with P(S) =
∑

i∈S pi .

T’kindt Exponential Algorithms with applications to scheduling 14 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

Let be S ⊆ {1, . . . ,n},
Let Opt [S] be the recurrence function calculated on set S :
Opt [S] is equal to the minimal value of criterion maxi fi for
any permutation of the jobs in S .

We have :
Opt [∅] = −∞, if ft can be negative
Opt [∅] = 0, if ft cannot be negative
Opt [S] = mint∈S{max

(
Opt [S − {t}]; ft(P(S))

)
}

with P(S) =
∑

i∈S pi .

T’kindt Exponential Algorithms with applications to scheduling 14 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

Lost with that recurrence function ? Proceed with the exercice,

Exercice.

Apply the dynamic programming algorithm on the following
instance :
n = 3, [pi]i = [3; 4; 5], [di]i = [4; 5; 8], fi(Ci) = Ci − di ,

T’kindt Exponential Algorithms with applications to scheduling 15 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

n = 3, [pi]i = [3; 4; 5], [di]i = [4; 5; 8], fi(Ci) = Ci − di ,

Enumerate all sets S with 1 element,

S = {1} : Opt [S] = max(−∞; 3− 4) = −1,

S = {2} : Opt [S] = max(−∞; 4− 5) = −1,

S = {3} : Opt [S] = max(−∞; 5− 8) = −3,

Do on your own for all sets with 2 and 3 elements !

T’kindt Exponential Algorithms with applications to scheduling 16 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

n = 3, [pi]i = [3; 4; 5], [di]i = [4; 5; 8], fi(Ci) = Ci − di ,

Enumerate all sets S with 1 element,

S = {1} : Opt [S] = max(−∞; 3− 4) = −1,

S = {2} : Opt [S] = max(−∞; 4− 5) = −1,

S = {3} : Opt [S] = max(−∞; 5− 8) = −3,

Do on your own for all sets with 2 and 3 elements !

T’kindt Exponential Algorithms with applications to scheduling 16 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

n = 3, [pi]i = [3; 4; 5], [di]i = [4; 5; 8], fi(Ci) = Ci − di ,

Enumerate all sets S with 1 element,

S = {1} : Opt [S] = max(−∞; 3− 4) = −1,

S = {2} : Opt [S] = max(−∞; 4− 5) = −1,

S = {3} : Opt [S] = max(−∞; 5− 8) = −3,

Do on your own for all sets with 2 and 3 elements !

T’kindt Exponential Algorithms with applications to scheduling 16 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

n = 3, [pi]i = [3; 4; 5], [di]i = [4; 5; 8], fi(Ci) = Ci − di ,

Enumerate all sets S with 1 element,

S = {1} : Opt [S] = max(−∞; 3− 4) = −1,

S = {2} : Opt [S] = max(−∞; 4− 5) = −1,

S = {3} : Opt [S] = max(−∞; 5− 8) = −3,

Do on your own for all sets with 2 and 3 elements !

T’kindt Exponential Algorithms with applications to scheduling 16 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

n = 3, [pi]i = [3; 4; 5], [di]i = [4; 5; 8], fi(Ci) = Ci − di ,

Enumerate all sets S with 1 element,

S = {1} : Opt [S] = max(−∞; 3− 4) = −1,

S = {2} : Opt [S] = max(−∞; 4− 5) = −1,

S = {3} : Opt [S] = max(−∞; 5− 8) = −3,

Do on your own for all sets with 2 and 3 elements !

T’kindt Exponential Algorithms with applications to scheduling 16 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

n = 3, [pi]i = [3; 4; 5], [di]i = [4; 5; 8], fi(Ci) = Ci − di ,

Enumerate all sets S with 1 element,

S = {1} : Opt [S] = max(−∞; 3− 4) = −1,

S = {2} : Opt [S] = max(−∞; 4− 5) = −1,

S = {3} : Opt [S] = max(−∞; 5− 8) = −3,

Do on your own for all sets with 2 and 3 elements !

T’kindt Exponential Algorithms with applications to scheduling 16 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

Enumerate all sets S with 2 elements,

S = {1, 2} :

Opt [S] = min
(
max

(
Opt [{2}]; f1(7)

)
; max

(
Opt [{1}]; f2(7)

))
,

⇒ Opt [{1, 2}] = min
(
max(−1; 3);max(−1; 2)

)
= 2

S = {1, 3} :

Opt [S] = min
(
max

(
Opt [{3}]; f1(8)

)
; max

(
Opt [{1}]; f3(8)

))
,

⇒ Opt [{1, 3}] = min
(
max(−3; 4);max(−1; 0)

)
= 0

S = {2, 3} :

Opt [S] = min
(
max

(
Opt [{3}]; f2(9)

)
; max

(
Opt [{2}]; f3(9)

))
,

⇒ Opt [{2, 3}] = min
(
max(−3; 4);max(−1; 1)

)
= 1

T’kindt Exponential Algorithms with applications to scheduling 17 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

Enumerate all sets S with 2 elements,

S = {1, 2} :

Opt [S] = min
(
max

(
Opt [{2}]; f1(7)

)
; max

(
Opt [{1}]; f2(7)

))
,

⇒ Opt [{1, 2}] = min
(
max(−1; 3);max(−1; 2)

)
= 2

S = {1, 3} :

Opt [S] = min
(
max

(
Opt [{3}]; f1(8)

)
; max

(
Opt [{1}]; f3(8)

))
,

⇒ Opt [{1, 3}] = min
(
max(−3; 4);max(−1; 0)

)
= 0

S = {2, 3} :

Opt [S] = min
(
max

(
Opt [{3}]; f2(9)

)
; max

(
Opt [{2}]; f3(9)

))
,

⇒ Opt [{2, 3}] = min
(
max(−3; 4);max(−1; 1)

)
= 1

T’kindt Exponential Algorithms with applications to scheduling 17 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

Enumerate all sets S with 2 elements,

S = {1, 2} :

Opt [S] = min
(
max

(
Opt [{2}]; f1(7)

)
; max

(
Opt [{1}]; f2(7)

))
,

⇒ Opt [{1, 2}] = min
(
max(−1; 3);max(−1; 2)

)
= 2

S = {1, 3} :

Opt [S] = min
(
max

(
Opt [{3}]; f1(8)

)
; max

(
Opt [{1}]; f3(8)

))
,

⇒ Opt [{1, 3}] = min
(
max(−3; 4);max(−1; 0)

)
= 0

S = {2, 3} :

Opt [S] = min
(
max

(
Opt [{3}]; f2(9)

)
; max

(
Opt [{2}]; f3(9)

))
,

⇒ Opt [{2, 3}] = min
(
max(−3; 4);max(−1; 1)

)
= 1

T’kindt Exponential Algorithms with applications to scheduling 17 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

Enumerate all sets S with 2 elements,

S = {1, 2} :

Opt [S] = min
(
max

(
Opt [{2}]; f1(7)

)
; max

(
Opt [{1}]; f2(7)

))
,

⇒ Opt [{1, 2}] = min
(
max(−1; 3);max(−1; 2)

)
= 2

S = {1, 3} :

Opt [S] = min
(
max

(
Opt [{3}]; f1(8)

)
; max

(
Opt [{1}]; f3(8)

))
,

⇒ Opt [{1, 3}] = min
(
max(−3; 4);max(−1; 0)

)
= 0

S = {2, 3} :

Opt [S] = min
(
max

(
Opt [{3}]; f2(9)

)
; max

(
Opt [{2}]; f3(9)

))
,

⇒ Opt [{2, 3}] = min
(
max(−3; 4);max(−1; 1)

)
= 1

T’kindt Exponential Algorithms with applications to scheduling 17 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

Enumerate all sets S with 2 elements,

S = {1, 2} :

Opt [S] = min
(
max

(
Opt [{2}]; f1(7)

)
; max

(
Opt [{1}]; f2(7)

))
,

⇒ Opt [{1, 2}] = min
(
max(−1; 3);max(−1; 2)

)
= 2

S = {1, 3} :

Opt [S] = min
(
max

(
Opt [{3}]; f1(8)

)
; max

(
Opt [{1}]; f3(8)

))
,

⇒ Opt [{1, 3}] = min
(
max(−3; 4);max(−1; 0)

)
= 0

S = {2, 3} :

Opt [S] = min
(
max

(
Opt [{3}]; f2(9)

)
; max

(
Opt [{2}]; f3(9)

))
,

⇒ Opt [{2, 3}] = min
(
max(−3; 4);max(−1; 1)

)
= 1

T’kindt Exponential Algorithms with applications to scheduling 17 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

Enumerate all sets S with 2 elements,

S = {1, 2} :

Opt [S] = min
(
max

(
Opt [{2}]; f1(7)

)
; max

(
Opt [{1}]; f2(7)

))
,

⇒ Opt [{1, 2}] = min
(
max(−1; 3);max(−1; 2)

)
= 2

S = {1, 3} :

Opt [S] = min
(
max

(
Opt [{3}]; f1(8)

)
; max

(
Opt [{1}]; f3(8)

))
,

⇒ Opt [{1, 3}] = min
(
max(−3; 4);max(−1; 0)

)
= 0

S = {2, 3} :

Opt [S] = min
(
max

(
Opt [{3}]; f2(9)

)
; max

(
Opt [{2}]; f3(9)

))
,

⇒ Opt [{2, 3}] = min
(
max(−3; 4);max(−1; 1)

)
= 1

T’kindt Exponential Algorithms with applications to scheduling 17 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

Enumerate all sets S with 2 elements,

S = {1, 2} :

Opt [S] = min
(
max

(
Opt [{2}]; f1(7)

)
; max

(
Opt [{1}]; f2(7)

))
,

⇒ Opt [{1, 2}] = min
(
max(−1; 3);max(−1; 2)

)
= 2

S = {1, 3} :

Opt [S] = min
(
max

(
Opt [{3}]; f1(8)

)
; max

(
Opt [{1}]; f3(8)

))
,

⇒ Opt [{1, 3}] = min
(
max(−3; 4);max(−1; 0)

)
= 0

S = {2, 3} :

Opt [S] = min
(
max

(
Opt [{3}]; f2(9)

)
; max

(
Opt [{2}]; f3(9)

))
,

⇒ Opt [{2, 3}] = min
(
max(−3; 4);max(−1; 1)

)
= 1

T’kindt Exponential Algorithms with applications to scheduling 17 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

Enumerate all sets S with 3 elements,

S = {1, 2, 3} : Opt [S] = min
(
max

(
Opt [{2, 3}]; f1(12)

)
;

max
(
Opt [{1, 3}]; f2(12)

)
;

max
(
Opt [{1, 2}]; f3(12)

))
,

⇒ Opt [{1, 2, 3}] = min
(
max(1; 8);max(0; 7);max(2; 4)

)
=

4

This corresponds to the schedule (1, 2, 3).

T’kindt Exponential Algorithms with applications to scheduling 18 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

Enumerate all sets S with 3 elements,

S = {1, 2, 3} : Opt [S] = min
(
max

(
Opt [{2, 3}]; f1(12)

)
;

max
(
Opt [{1, 3}]; f2(12)

)
;

max
(
Opt [{1, 2}]; f3(12)

))
,

⇒ Opt [{1, 2, 3}] = min
(
max(1; 8);max(0; 7);max(2; 4)

)
=

4

This corresponds to the schedule (1, 2, 3).

T’kindt Exponential Algorithms with applications to scheduling 18 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

Enumerate all sets S with 3 elements,

S = {1, 2, 3} : Opt [S] = min
(
max

(
Opt [{2, 3}]; f1(12)

)
;

max
(
Opt [{1, 3}]; f2(12)

)
;

max
(
Opt [{1, 2}]; f3(12)

))
,

⇒ Opt [{1, 2, 3}] = min
(
max(1; 8);max(0; 7);max(2; 4)

)
=

4

This corresponds to the schedule (1, 2, 3).

T’kindt Exponential Algorithms with applications to scheduling 18 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

Enumerate all sets S with 3 elements,

S = {1, 2, 3} : Opt [S] = min
(
max

(
Opt [{2, 3}]; f1(12)

)
;

max
(
Opt [{1, 3}]; f2(12)

)
;

max
(
Opt [{1, 2}]; f3(12)

))
,

⇒ Opt [{1, 2, 3}] = min
(
max(1; 8);max(0; 7);max(2; 4)

)
=

4

This corresponds to the schedule (1, 2, 3).

T’kindt Exponential Algorithms with applications to scheduling 18 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

Analyse of the worst-case time complexity...

Opt [S] = mint∈S{max
(
Opt [S − {t}]; ft (P(S))

)
}

Usefull note : the computation of one Opt [] can be done in
O(n) time.

Fundamental question : how many computations of Opt []
have to be done ?

Generation of all subsets of a size k ≤ n,∑n
k=0

(
n
k

)
,

which, by means of Newton’s formula for sum of binomials :∑n
k=0

(
n
k

)
x kyn−k = (x + y)n ,

can be rewritten as : 2n .

The worst-case time (and space) complexity of DynPro is in
O∗(2n),

T’kindt Exponential Algorithms with applications to scheduling 19 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

Analyse of the worst-case time complexity...

Opt [S] = mint∈S{max
(
Opt [S − {t}]; ft (P(S))

)
}

Usefull note : the computation of one Opt [] can be done in
O(n) time.

Fundamental question : how many computations of Opt []
have to be done ?

Generation of all subsets of a size k ≤ n,∑n
k=0

(
n
k

)
,

which, by means of Newton’s formula for sum of binomials :∑n
k=0

(
n
k

)
x kyn−k = (x + y)n ,

can be rewritten as : 2n .

The worst-case time (and space) complexity of DynPro is in
O∗(2n),

T’kindt Exponential Algorithms with applications to scheduling 19 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

Analyse of the worst-case time complexity...

Opt [S] = mint∈S{max
(
Opt [S − {t}]; ft (P(S))

)
}

Usefull note : the computation of one Opt [] can be done in
O(n) time.

Fundamental question : how many computations of Opt []
have to be done ?

Generation of all subsets of a size k ≤ n,∑n
k=0

(
n
k

)
,

which, by means of Newton’s formula for sum of binomials :∑n
k=0

(
n
k

)
x kyn−k = (x + y)n ,

can be rewritten as : 2n .

The worst-case time (and space) complexity of DynPro is in
O∗(2n),

T’kindt Exponential Algorithms with applications to scheduling 19 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

Analyse of the worst-case time complexity...

Opt [S] = mint∈S{max
(
Opt [S − {t}]; ft (P(S))

)
}

Usefull note : the computation of one Opt [] can be done in
O(n) time.

Fundamental question : how many computations of Opt []
have to be done ?

Generation of all subsets of a size k ≤ n,∑n
k=0

(
n
k

)
,

which, by means of Newton’s formula for sum of binomials :∑n
k=0

(
n
k

)
x kyn−k = (x + y)n ,

can be rewritten as : 2n .

The worst-case time (and space) complexity of DynPro is in
O∗(2n),

T’kindt Exponential Algorithms with applications to scheduling 19 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

Analyse of the worst-case time complexity...

Opt [S] = mint∈S{max
(
Opt [S − {t}]; ft (P(S))

)
}

Usefull note : the computation of one Opt [] can be done in
O(n) time.

Fundamental question : how many computations of Opt []
have to be done ?

Generation of all subsets of a size k ≤ n,∑n
k=0

(
n
k

)
,

which, by means of Newton’s formula for sum of binomials :∑n
k=0

(
n
k

)
x kyn−k = (x + y)n ,

can be rewritten as : 2n .

The worst-case time (and space) complexity of DynPro is in
O∗(2n),

T’kindt Exponential Algorithms with applications to scheduling 19 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

This improves upon the time complexity of ENUM for the
permutation problem (O∗(n!)),

This Dynamic Programming algorithm has been presented by
Fomin and Kratsch [3]... this is dynamic programming accross
the subsets.

[3] Fomin F, Kratsch D (2010) Exact Exponential Algorithms. Springer

T’kindt Exponential Algorithms with applications to scheduling 20 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

This improves upon the time complexity of ENUM for the
permutation problem (O∗(n!)),

This Dynamic Programming algorithm has been presented by
Fomin and Kratsch [3]... this is dynamic programming accross
the subsets.

[3] Fomin F, Kratsch D (2010) Exact Exponential Algorithms. Springer

T’kindt Exponential Algorithms with applications to scheduling 20 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Dynamic Programming AtS

Applicable on decomposable scheduling problems
(C (S) =

∑
i∈S pi),

Works on the following problems : 1|dec|fmax , 1|dec|∑i fi ,
1|prec|∑i wiCi , 1|di |

∑
i wiUi , 1|di |

∑
i wiTi ...

... O∗(2n) time and space.

DPAtS can be extended ([6]) : a Pareto Dynamic
Programming enables to derive :

Problem wctc wcsc
F3||Cmax O∗(3n) O∗(3n)
F3||fmax O∗(5n) O∗(5n)
F3||

∑
i fi O∗(5n) O∗(5n)

[6] L. Shang, C. Lenté, M. Liedloff, V.T’kindt (2018). An exponential dynamic programming algorithm for the

3-machine flowshop scheduling problem to minimize the makespan, Journal of Scheduling, 21(2) :227-233.

T’kindt Exponential Algorithms with applications to scheduling 21 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Dynamic Programming AtS

Applicable on decomposable scheduling problems
(C (S) =

∑
i∈S pi),

Works on the following problems : 1|dec|fmax , 1|dec|∑i fi ,
1|prec|∑i wiCi , 1|di |

∑
i wiUi , 1|di |

∑
i wiTi ...

... O∗(2n) time and space.

DPAtS can be extended ([6]) : a Pareto Dynamic
Programming enables to derive :

Problem wctc wcsc
F3||Cmax O∗(3n) O∗(3n)
F3||fmax O∗(5n) O∗(5n)
F3||

∑
i fi O∗(5n) O∗(5n)

[6] L. Shang, C. Lenté, M. Liedloff, V.T’kindt (2018). An exponential dynamic programming algorithm for the

3-machine flowshop scheduling problem to minimize the makespan, Journal of Scheduling, 21(2) :227-233.

T’kindt Exponential Algorithms with applications to scheduling 21 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Dynamic Programming AtS

Applicable on decomposable scheduling problems
(C (S) =

∑
i∈S pi),

Works on the following problems : 1|dec|fmax , 1|dec|∑i fi ,
1|prec|∑i wiCi , 1|di |

∑
i wiUi , 1|di |

∑
i wiTi ...

... O∗(2n) time and space.

DPAtS can be extended ([6]) : a Pareto Dynamic
Programming enables to derive :

Problem wctc wcsc
F3||Cmax O∗(3n) O∗(3n)
F3||fmax O∗(5n) O∗(5n)
F3||

∑
i fi O∗(5n) O∗(5n)

[6] L. Shang, C. Lenté, M. Liedloff, V.T’kindt (2018). An exponential dynamic programming algorithm for the

3-machine flowshop scheduling problem to minimize the makespan, Journal of Scheduling, 21(2) :227-233.

T’kindt Exponential Algorithms with applications to scheduling 21 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Pareto Dynamic Programming

Why a need for generalization ?

The 1||fmax problem is decomposable but, for instance, the
F3||Cmax is not,

F3||Cmax : Let n jobs to be scheduled on 3 machines (same routing from M1 to M3). Each job i is

defined by processing times pi,j , 1 ≤ j ≤ 3 and the goal is to find the permutation which minimizes

Cmax = maxi (Ci,3).

The intuition : when computing
”Opt [S] = mint∈S{max

(
Opt [S − {t}]; ft(P(S))

)
}”,

many sequences (S − {t}) (at most 2n) with different C 2
max

and C 3
max must be kept in memory.

T’kindt Exponential Algorithms with applications to scheduling 22 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Pareto Dynamic Programming

Why a need for generalization ?

The 1||fmax problem is decomposable but, for instance, the
F3||Cmax is not,

F3||Cmax : Let n jobs to be scheduled on 3 machines (same routing from M1 to M3). Each job i is

defined by processing times pi,j , 1 ≤ j ≤ 3 and the goal is to find the permutation which minimizes

Cmax = maxi (Ci,3).

The intuition : when computing
”Opt [S] = mint∈S{max

(
Opt [S − {t}]; ft(P(S))

)
}”,

many sequences (S − {t}) (at most 2n) with different C 2
max

and C 3
max must be kept in memory.

T’kindt Exponential Algorithms with applications to scheduling 22 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Pareto Dynamic Programming

Why a need for generalization ?

The 1||fmax problem is decomposable but, for instance, the
F3||Cmax is not,

F3||Cmax : Let n jobs to be scheduled on 3 machines (same routing from M1 to M3). Each job i is

defined by processing times pi,j , 1 ≤ j ≤ 3 and the goal is to find the permutation which minimizes

Cmax = maxi (Ci,3).

The intuition : when computing
”Opt [S] = mint∈S{max

(
Opt [S − {t}]; ft(P(S))

)
}”,

many sequences (S − {t}) (at most 2n) with different C 2
max

and C 3
max must be kept in memory.

T’kindt Exponential Algorithms with applications to scheduling 22 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-... What ? !

Branch-and-Reduce (BaR) ressembles to known exact
algorithms like Branch-and-Bound or Branch-and-Cut...

BaR are tree-search based algorithms for which we try to
reduce the a worst-case complexity,

A BaR algorithm implements three components :

A branching rule,
A reduction rule at each node,
A stopping rule.

T’kindt Exponential Algorithms with applications to scheduling 23 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-... What ? !

Branch-and-Reduce (BaR) ressembles to known exact
algorithms like Branch-and-Bound or Branch-and-Cut...

BaR are tree-search based algorithms for which we try to
reduce the a worst-case complexity,

A BaR algorithm implements three components :

A branching rule,
A reduction rule at each node,
A stopping rule.

T’kindt Exponential Algorithms with applications to scheduling 23 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-... What ? !

Branch-and-Reduce (BaR) ressembles to known exact
algorithms like Branch-and-Bound or Branch-and-Cut...

BaR are tree-search based algorithms for which we try to
reduce the a worst-case complexity,

A BaR algorithm implements three components :

A branching rule,
A reduction rule at each node,
A stopping rule.

T’kindt Exponential Algorithms with applications to scheduling 23 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-... What ? !

Branch-and-Reduce (BaR) ressembles to known exact
algorithms like Branch-and-Bound or Branch-and-Cut...

BaR are tree-search based algorithms for which we try to
reduce the a worst-case complexity,

A BaR algorithm implements three components :

A branching rule,
A reduction rule at each node,
A stopping rule.

T’kindt Exponential Algorithms with applications to scheduling 23 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-... What ? !

Branch-and-Reduce (BaR) ressembles to known exact
algorithms like Branch-and-Bound or Branch-and-Cut...

BaR are tree-search based algorithms for which we try to
reduce the a worst-case complexity,

A BaR algorithm implements three components :

A branching rule,
A reduction rule at each node,
A stopping rule.

T’kindt Exponential Algorithms with applications to scheduling 23 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-... What ? !

Branch-and-Reduce (BaR) ressembles to known exact
algorithms like Branch-and-Bound or Branch-and-Cut...

BaR are tree-search based algorithms for which we try to
reduce the a worst-case complexity,

A BaR algorithm implements three components :

A branching rule,
A reduction rule at each node,
A stopping rule.

T’kindt Exponential Algorithms with applications to scheduling 23 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

Consider the Maximum Independent Set (MIS) problem :

Let G = (V ,E) be an undirected graph,

An independent set S is a set of vertices such that no two
vertices from S are connected by an edge,

The MIS problem consists in finding S with a maximum
cardinality,

T’kindt Exponential Algorithms with applications to scheduling 24 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

First case : the degree d(v) ≤ 1, ∀v ∈ V .

a b c

Add any vertex v with d(v) = 0 into S ,

Add a vertex v with d(v) = 1 into S and remove the linked
vertex (repeat),

T’kindt Exponential Algorithms with applications to scheduling 25 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

First case : the degree d(v) ≤ 1, ∀v ∈ V .

a b c

Add any vertex v with d(v) = 0 into S ,

Add a vertex v with d(v) = 1 into S and remove the linked
vertex (repeat),

T’kindt Exponential Algorithms with applications to scheduling 25 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

First case : the degree d(v) ≤ 1, ∀v ∈ V .

a b c

Add any vertex v with d(v) = 0 into S ,

Add a vertex v with d(v) = 1 into S and remove the linked
vertex (repeat),

T’kindt Exponential Algorithms with applications to scheduling 25 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

Second case : the degree d(v) ≤ 2, ∀v ∈ V .

a b c

The graph is a set of chains,

By testing, for each chain, if a vertex is in S , the problem can
be solved in O(|V |) time.

T’kindt Exponential Algorithms with applications to scheduling 26 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

Second case : the degree d(v) ≤ 2, ∀v ∈ V .

a b c

The graph is a set of chains,

By testing, for each chain, if a vertex is in S , the problem can
be solved in O(|V |) time.

T’kindt Exponential Algorithms with applications to scheduling 26 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

Second case : the degree d(v) ≤ 2, ∀v ∈ V .

a b c

The graph is a set of chains,

By testing, for each chain, if a vertex is in S , the problem can
be solved in O(|V |) time.

T’kindt Exponential Algorithms with applications to scheduling 26 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

General case : the maximum degree of vertices is at least 3.

a b c

d e

g

Let us consider a BraRed algorithm with the following
branching rule :

Select the vertex v of maximum degree,
Create a child node with v ∈ S and a child node with v /∈ S .

T’kindt Exponential Algorithms with applications to scheduling 27 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

General case : the maximum degree of vertices is at least 3.

a b c

d e

g

Let us consider a BraRed algorithm with the following
branching rule :

Select the vertex v of maximum degree,
Create a child node with v ∈ S and a child node with v /∈ S .

T’kindt Exponential Algorithms with applications to scheduling 27 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

General case : the maximum degree of vertices is at least 3.

a b c

d e

g

Let us consider a BraRed algorithm with the following
branching rule :

Select the vertex v of maximum degree,
Create a child node with v ∈ S and a child node with v /∈ S .

T’kindt Exponential Algorithms with applications to scheduling 27 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

General case : the maximum degree of vertices is at least 3.

a b c

d e

g

Let us consider a BraRed algorithm with the following
branching rule :

Select the vertex v of maximum degree,
Create a child node with v ∈ S and a child node with v /∈ S .

T’kindt Exponential Algorithms with applications to scheduling 27 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

General case : the maximum degree of vertices is at least 3.

Select vertex b of degree 4,

Case 1 : b ∈ S , then a, c, e and f are removed. Vertex d ∈ S
by deduction.

Case 2 : b /∈ S , then c and f have degree 0 and are put in S .
Vertices a, d , e form a graphe of max degree 2... solvable in
polynomial time.

T’kindt Exponential Algorithms with applications to scheduling 28 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

General case : the maximum degree of vertices is at least 3.

Select vertex b of degree 4,

a b c

d e

f

a b c

d e

f

A chain...

Case 1 : b ∈ S , then a, c, e and f are removed. Vertex d ∈ S
by deduction.

Case 2 : b /∈ S , then c and f have degree 0 and are put in S .
Vertices a, d , e form a graphe of max degree 2... solvable in
polynomial time.

T’kindt Exponential Algorithms with applications to scheduling 28 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

General case : the maximum degree of vertices is at least 3.

Select vertex b of degree 4,

a b c

d e

f

a b c

d e

f

A chain...

Case 1 : b ∈ S , then a, c, e and f are removed. Vertex d ∈ S
by deduction.

Case 2 : b /∈ S , then c and f have degree 0 and are put in S .
Vertices a, d , e form a graphe of max degree 2... solvable in
polynomial time.

T’kindt Exponential Algorithms with applications to scheduling 28 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

General case : the maximum degree of vertices is at least 3.

Select vertex b of degree 4,

a b c

d e

f

a b c

d e

f

A chain...

Case 1 : b ∈ S , then a, c, e and f are removed. Vertex d ∈ S
by deduction.

Case 2 : b /∈ S , then c and f have degree 0 and are put in S .
Vertices a, d , e form a graphe of max degree 2... solvable in
polynomial time.

T’kindt Exponential Algorithms with applications to scheduling 28 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

General case : the maximum degree of vertices is at least 3.

Select vertex b of degree 4,

a b c

d e

f

a b c

d e

f

A chain...

In that case 2 nodes have been built.

Reduction rule : when a decision is taken on a vertex v ,
decisions are taken for all its neighborhood,

Stopping rule : for a node, stop branching as far as the
maximum degree is 2.

T’kindt Exponential Algorithms with applications to scheduling 29 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

General case : the maximum degree of vertices is at least 3.

Select vertex b of degree 4,

a b c

d e

f

a b c

d e

f

A chain...

In that case 2 nodes have been built.

Reduction rule : when a decision is taken on a vertex v ,
decisions are taken for all its neighborhood,

Stopping rule : for a node, stop branching as far as the
maximum degree is 2.

T’kindt Exponential Algorithms with applications to scheduling 29 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

General case : the maximum degree of vertices is at least 3.

Select vertex b of degree 4,

a b c

d e

f

a b c

d e

f

A chain...

In that case 2 nodes have been built.

Reduction rule : when a decision is taken on a vertex v ,
decisions are taken for all its neighborhood,

Stopping rule : for a node, stop branching as far as the
maximum degree is 2.

T’kindt Exponential Algorithms with applications to scheduling 29 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

The BraRed algorithm (main iterated loop) :

Put all vertices of degree 0 or 1 into S ,
Let v be the vertex with maximum degree :

if d(v) ≥ 3, create two child nodes : one with v ∈ S , another
with v /∈ S . Propagate to its neighborhood.
if d(v) < 3, solves the problem in polynomial time at the
current node.

The above processing is applied on any unbranched node in
BraRed.

T’kindt Exponential Algorithms with applications to scheduling 30 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

The BraRed algorithm (main iterated loop) :

Put all vertices of degree 0 or 1 into S ,
Let v be the vertex with maximum degree :

if d(v) ≥ 3, create two child nodes : one with v ∈ S , another
with v /∈ S . Propagate to its neighborhood.
if d(v) < 3, solves the problem in polynomial time at the
current node.

The above processing is applied on any unbranched node in
BraRed.

T’kindt Exponential Algorithms with applications to scheduling 30 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

The BraRed algorithm (main iterated loop) :

Put all vertices of degree 0 or 1 into S ,
Let v be the vertex with maximum degree :

if d(v) ≥ 3, create two child nodes : one with v ∈ S , another
with v /∈ S . Propagate to its neighborhood.
if d(v) < 3, solves the problem in polynomial time at the
current node.

The above processing is applied on any unbranched node in
BraRed.

T’kindt Exponential Algorithms with applications to scheduling 30 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

The BraRed algorithm (main iterated loop) :

Put all vertices of degree 0 or 1 into S ,
Let v be the vertex with maximum degree :

if d(v) ≥ 3, create two child nodes : one with v ∈ S , another
with v /∈ S . Propagate to its neighborhood.
if d(v) < 3, solves the problem in polynomial time at the
current node.

The above processing is applied on any unbranched node in
BraRed.

T’kindt Exponential Algorithms with applications to scheduling 30 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

The BraRed algorithm (main iterated loop) :

Put all vertices of degree 0 or 1 into S ,
Let v be the vertex with maximum degree :

if d(v) ≥ 3, create two child nodes : one with v ∈ S , another
with v /∈ S . Propagate to its neighborhood.
if d(v) < 3, solves the problem in polynomial time at the
current node.

The above processing is applied on any unbranched node in
BraRed.

T’kindt Exponential Algorithms with applications to scheduling 30 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

The BraRed algorithm (main iterated loop) :

Put all vertices of degree 0 or 1 into S ,
Let v be the vertex with maximum degree :

if d(v) ≥ 3, create two child nodes : one with v ∈ S , another
with v /∈ S . Propagate to its neighborhood.
if d(v) < 3, solves the problem in polynomial time at the
current node.

The above processing is applied on any unbranched node in
BraRed.

T’kindt Exponential Algorithms with applications to scheduling 30 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

What is the worst-case complexity of BraRed ?

Let us observe the branching rule : T (n) is the time required
to solve a problem with n vertices,

We can state that :

T (n) ≤ T (n − 1− d(v)) + T (n − 1)

with v the vertex selected for branching.

The worst case is obtained when d(v) is minimal, i.e.
d(v) = 3.

So, in the worst case the time complexity for solving the
problem is T (n) = T (n − 4) + T (n − 1) with n = |V |.

T’kindt Exponential Algorithms with applications to scheduling 31 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

What is the worst-case complexity of BraRed ?

Let us observe the branching rule : T (n) is the time required
to solve a problem with n vertices,

We can state that :

T (n) ≤ T (n − 1− d(v)) + T (n − 1)

with v the vertex selected for branching.

The worst case is obtained when d(v) is minimal, i.e.
d(v) = 3.

So, in the worst case the time complexity for solving the
problem is T (n) = T (n − 4) + T (n − 1) with n = |V |.

T’kindt Exponential Algorithms with applications to scheduling 31 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

What is the worst-case complexity of BraRed ?

Let us observe the branching rule : T (n) is the time required
to solve a problem with n vertices,

We can state that :

T (n) ≤ T (n − 1− d(v)) + T (n − 1)

with v the vertex selected for branching.

The worst case is obtained when d(v) is minimal, i.e.
d(v) = 3.

So, in the worst case the time complexity for solving the
problem is T (n) = T (n − 4) + T (n − 1) with n = |V |.

T’kindt Exponential Algorithms with applications to scheduling 31 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

What is the worst-case complexity of BraRed ?

Let us observe the branching rule : T (n) is the time required
to solve a problem with n vertices,

We can state that :

T (n) ≤ T (n − 1− d(v)) + T (n − 1)

with v the vertex selected for branching.

The worst case is obtained when d(v) is minimal, i.e.
d(v) = 3.

So, in the worst case the time complexity for solving the
problem is T (n) = T (n − 4) + T (n − 1) with n = |V |.

T’kindt Exponential Algorithms with applications to scheduling 31 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

What is the worst-case complexity of BraRed ?

Let us observe the branching rule : T (n) is the time required
to solve a problem with n vertices,

We can state that :

T (n) ≤ T (n − 1− d(v)) + T (n − 1)

with v the vertex selected for branching.

The worst case is obtained when d(v) is minimal, i.e.
d(v) = 3.

So, in the worst case the time complexity for solving the
problem is T (n) = T (n − 4) + T (n − 1) with n = |V |.

T’kindt Exponential Algorithms with applications to scheduling 31 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

How can we recursively evaluate
T (n) = T (n − 4) + T (n − 1) ?

By assuming that T (n) = xn , we can write :
xn = xn−4 + xn−1

⇔ 1 = x−4 + x−1

Then, compute the largest zero of the above function,

By using a solver like Matlab (for instance), we obtain
O∗(1.3803n) as the worst-case time complexity for BraRed,

O∗(1.3803n) is not bad. Also, BraRed has a polynomial space
complexity,

Notice that this is an upper bound (not tight at all), that
could be refined.

T’kindt Exponential Algorithms with applications to scheduling 32 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

How can we recursively evaluate
T (n) = T (n − 4) + T (n − 1) ?

By assuming that T (n) = xn , we can write :
xn = xn−4 + xn−1

⇔ 1 = x−4 + x−1

Then, compute the largest zero of the above function,

By using a solver like Matlab (for instance), we obtain
O∗(1.3803n) as the worst-case time complexity for BraRed,

O∗(1.3803n) is not bad. Also, BraRed has a polynomial space
complexity,

Notice that this is an upper bound (not tight at all), that
could be refined.

T’kindt Exponential Algorithms with applications to scheduling 32 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

How can we recursively evaluate
T (n) = T (n − 4) + T (n − 1) ?

By assuming that T (n) = xn , we can write :
xn = xn−4 + xn−1

⇔ 1 = x−4 + x−1

Then, compute the largest zero of the above function,

By using a solver like Matlab (for instance), we obtain
O∗(1.3803n) as the worst-case time complexity for BraRed,

O∗(1.3803n) is not bad. Also, BraRed has a polynomial space
complexity,

Notice that this is an upper bound (not tight at all), that
could be refined.

T’kindt Exponential Algorithms with applications to scheduling 32 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

How can we recursively evaluate
T (n) = T (n − 4) + T (n − 1) ?

By assuming that T (n) = xn , we can write :
xn = xn−4 + xn−1

⇔ 1 = x−4 + x−1

Then, compute the largest zero of the above function,

By using a solver like Matlab (for instance), we obtain
O∗(1.3803n) as the worst-case time complexity for BraRed,

O∗(1.3803n) is not bad. Also, BraRed has a polynomial space
complexity,

Notice that this is an upper bound (not tight at all), that
could be refined.

T’kindt Exponential Algorithms with applications to scheduling 32 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

How can we recursively evaluate
T (n) = T (n − 4) + T (n − 1) ?

By assuming that T (n) = xn , we can write :
xn = xn−4 + xn−1

⇔ 1 = x−4 + x−1

Then, compute the largest zero of the above function,

By using a solver like Matlab (for instance), we obtain
O∗(1.3803n) as the worst-case time complexity for BraRed,

O∗(1.3803n) is not bad. Also, BraRed has a polynomial space
complexity,

Notice that this is an upper bound (not tight at all), that
could be refined.

T’kindt Exponential Algorithms with applications to scheduling 32 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

How can we recursively evaluate
T (n) = T (n − 4) + T (n − 1) ?

By assuming that T (n) = xn , we can write :
xn = xn−4 + xn−1

⇔ 1 = x−4 + x−1

Then, compute the largest zero of the above function,

By using a solver like Matlab (for instance), we obtain
O∗(1.3803n) as the worst-case time complexity for BraRed,

O∗(1.3803n) is not bad. Also, BraRed has a polynomial space
complexity,

Notice that this is an upper bound (not tight at all), that
could be refined.

T’kindt Exponential Algorithms with applications to scheduling 32 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

How can we recursively evaluate
T (n) = T (n − 4) + T (n − 1) ?

By assuming that T (n) = xn , we can write :
xn = xn−4 + xn−1

⇔ 1 = x−4 + x−1

Then, compute the largest zero of the above function,

By using a solver like Matlab (for instance), we obtain
O∗(1.3803n) as the worst-case time complexity for BraRed,

O∗(1.3803n) is not bad. Also, BraRed has a polynomial space
complexity,

Notice that this is an upper bound (not tight at all), that
could be refined.

T’kindt Exponential Algorithms with applications to scheduling 32 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : the 1|di |
∑

i Ti

Let us consider the 1|di |
∑

i Ti scheduling problem,

n jobs to be processed by a single machine. Each job i is
defined by :

a processing time pi , and a due date di ,
Ti = max(0;Ci − di) is its tardiness,
Goal : Find the permutation which minimizes

∑
i Ti .

The worst-case complexity of ENUM is in O∗(n!) time.

The worst-case complexity of DPAtS is in O∗(2n) time and
space.

T’kindt Exponential Algorithms with applications to scheduling 33 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : the 1|di |
∑

i Ti

Let us consider the 1|di |
∑

i Ti scheduling problem,

n jobs to be processed by a single machine. Each job i is
defined by :

a processing time pi , and a due date di ,
Ti = max(0;Ci − di) is its tardiness,
Goal : Find the permutation which minimizes

∑
i Ti .

The worst-case complexity of ENUM is in O∗(n!) time.

The worst-case complexity of DPAtS is in O∗(2n) time and
space.

T’kindt Exponential Algorithms with applications to scheduling 33 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : the 1|di |
∑

i Ti

Let us consider the 1|di |
∑

i Ti scheduling problem,

n jobs to be processed by a single machine. Each job i is
defined by :

a processing time pi , and a due date di ,
Ti = max(0;Ci − di) is its tardiness,
Goal : Find the permutation which minimizes

∑
i Ti .

The worst-case complexity of ENUM is in O∗(n!) time.

The worst-case complexity of DPAtS is in O∗(2n) time and
space.

T’kindt Exponential Algorithms with applications to scheduling 33 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : the 1|di |
∑

i Ti

Let us consider the 1|di |
∑

i Ti scheduling problem,

n jobs to be processed by a single machine. Each job i is
defined by :

a processing time pi , and a due date di ,
Ti = max(0;Ci − di) is its tardiness,
Goal : Find the permutation which minimizes

∑
i Ti .

The worst-case complexity of ENUM is in O∗(n!) time.

The worst-case complexity of DPAtS is in O∗(2n) time and
space.

T’kindt Exponential Algorithms with applications to scheduling 33 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : the 1|di |
∑

i Ti

We assume : p1 ≥ p2 ≥ ... ≥ pn and [k] is the job in position
k in EDD,

To define the branching scheme, we make use of ([8]) :

Property
Let job 1 in LPT order correspond to job [k] in EDD order. Then, job 1 can be set only in positions h ≥ k and

the jobs preceding and following job 1 are uniquely determined as

B1(h) = {[1], [2], . . . , [k − 1], [k + 1], . . . , [h]} and A1(h) = {[h + 1], . . . , [n]}.

Worst case : d1 ≤ d2 ≤ ... ≤ dn .

[8] E. L. Lawler (1977), “A pseudopolynomial algorithm for sequencing jobs to minimize total tardiness”, Annals of

Discrete Mathematics 1, 331–342.

T’kindt Exponential Algorithms with applications to scheduling 34 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : the 1|di |
∑

i Ti

We assume : p1 ≥ p2 ≥ ... ≥ pn and [k] is the job in position
k in EDD,

To define the branching scheme, we make use of ([8]) :

Property
Let job 1 in LPT order correspond to job [k] in EDD order. Then, job 1 can be set only in positions h ≥ k and

the jobs preceding and following job 1 are uniquely determined as

B1(h) = {[1], [2], . . . , [k − 1], [k + 1], . . . , [h]} and A1(h) = {[h + 1], . . . , [n]}.

Worst case : d1 ≤ d2 ≤ ... ≤ dn .

[8] E. L. Lawler (1977), “A pseudopolynomial algorithm for sequencing jobs to minimize total tardiness”, Annals of

Discrete Mathematics 1, 331–342.

T’kindt Exponential Algorithms with applications to scheduling 34 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : the 1|di |
∑

i Ti

We assume : p1 ≥ p2 ≥ ... ≥ pn and [k] is the job in position
k in EDD,

To define the branching scheme, we make use of ([8]) :

Property
Let job 1 in LPT order correspond to job [k] in EDD order. Then, job 1 can be set only in positions h ≥ k and

the jobs preceding and following job 1 are uniquely determined as

B1(h) = {[1], [2], . . . , [k − 1], [k + 1], . . . , [h]} and A1(h) = {[h + 1], . . . , [n]}.

Worst case : d1 ≤ d2 ≤ ... ≤ dn .

[8] E. L. Lawler (1977), “A pseudopolynomial algorithm for sequencing jobs to minimize total tardiness”, Annals of

Discrete Mathematics 1, 331–342.

T’kindt Exponential Algorithms with applications to scheduling 34 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : the 1|di |
∑

i Ti

We assume (wc) : p1 ≥ p2 ≥ ... ≥ pn and d1 ≤ d2 ≤ ... ≤ dn ,

Branching scheme :

Remark : When job 1 is branched on position k two
subproblems of size (k − 1) and (n − k) have to be solved.

T’kindt Exponential Algorithms with applications to scheduling 35 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : the 1|di |
∑

i Ti

We assume (wc) : p1 ≥ p2 ≥ ... ≥ pn and d1 ≤ d2 ≤ ... ≤ dn ,

Branching scheme :

1

position k

2, 3, ..., k

positions 1 to k − 1

k + 1, ..., n

positions k + 1 to n

Remark : When job 1 is branched on position k two
subproblems of size (k − 1) and (n − k) have to be solved.

T’kindt Exponential Algorithms with applications to scheduling 35 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : the 1|di |
∑

i Ti

We assume (wc) : p1 ≥ p2 ≥ ... ≥ pn and d1 ≤ d2 ≤ ... ≤ dn ,

Branching scheme :

1

position k

2, 3, ..., k

positions 1 to k − 1

k + 1, ..., n

positions k + 1 to n

...

... ...

∅

(1,1) (1,2) (1,n)

(2,2) (2,n)

Remark : When job 1 is branched on position k two
subproblems of size (k − 1) and (n − k) have to be solved.

T’kindt Exponential Algorithms with applications to scheduling 35 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : the 1|di |
∑

i Ti

We assume (wc) : p1 ≥ p2 ≥ ... ≥ pn and d1 ≤ d2 ≤ ... ≤ dn ,

Branching scheme :

1

position k

2, 3, ..., k

positions 1 to k − 1

k + 1, ..., n

positions k + 1 to n

...

... ...

∅

(1,1) (1,2) (1,n)

(2,2) (2,n)

Remark : When job 1 is branched on position k two
subproblems of size (k − 1) and (n − k) have to be solved.

T’kindt Exponential Algorithms with applications to scheduling 35 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : the 1|di |
∑

i Ti

Exercice.

Build the search tree on the following instance :
n = 3, [pi]i = [5; 4; 3], [di]i = [6; 8; 10],

T’kindt Exponential Algorithms with applications to scheduling 36 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : the 1|di |
∑

i Ti

First level, the longest job is job 1 : it can be scheduled in
positions 1, 2 or 3 leading to the following nodes,

T’kindt Exponential Algorithms with applications to scheduling 37 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : the 1|di |
∑

i Ti

First level, the longest job is job 1 : it can be scheduled in
positions 1, 2 or 3 leading to the following nodes,

T’kindt Exponential Algorithms with applications to scheduling 37 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : the 1|di |
∑

i Ti

Second level, the longest job is job 2,

T’kindt Exponential Algorithms with applications to scheduling 38 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : the 1|di |
∑

i Ti

Second level, the longest job is job 2,

T’kindt Exponential Algorithms with applications to scheduling 38 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : the 1|di |
∑

i Ti

We get the following recursive relation :

T (n) = 2T (n−1)+2T (n−2)+...+2T (2)+2T (1)+O(p(n))

⇔ T (n) = 3T (n − 1) +O(p(n))

This yields O∗(3n) worst-case time complexity, and
polynomial space.

T’kindt Exponential Algorithms with applications to scheduling 39 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : the 1|di |
∑

i Ti

We get the following recursive relation :

T (n) = 2T (n−1)+2T (n−2)+...+2T (2)+2T (1)+O(p(n))

⇔ T (n) = 3T (n − 1) +O(p(n))

This yields O∗(3n) worst-case time complexity, and
polynomial space.

T’kindt Exponential Algorithms with applications to scheduling 39 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : the 1|di |
∑

i Ti

We get the following recursive relation :

T (n) = 2T (n−1)+2T (n−2)+...+2T (2)+2T (1)+O(p(n))

⇔ T (n) = 3T (n − 1) +O(p(n))

This yields O∗(3n) worst-case time complexity, and
polynomial space.

T’kindt Exponential Algorithms with applications to scheduling 39 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : the 1|di |
∑

i Ti

By making use of the following property ([9])...

Property

For any pair of adjacent positions (i , i + 1) that can be assigned to
job 1, at least one of them is eliminated.

... we can derive that :

T (n) = 2T (n−1)+2T (n−3)+...+2T (4)+2T (2)+O(p(n))

⇔ T (n) = 2T (n − 1) + T (n − 2) +O(p(n))

This yields O∗(2.4143n) worst-case time complexity, and
polynomial space.

[9] W. Szwarc and S. Mukhopadhyay (1996), “Decomposition of the single machine total tardiness problem”,

Operations Research Letters 19, 243–250.

T’kindt Exponential Algorithms with applications to scheduling 40 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : the 1|di |
∑

i Ti

By making use of the following property ([9])...

Property

For any pair of adjacent positions (i , i + 1) that can be assigned to
job 1, at least one of them is eliminated.

... we can derive that :

T (n) = 2T (n−1)+2T (n−3)+...+2T (4)+2T (2)+O(p(n))

⇔ T (n) = 2T (n − 1) + T (n − 2) +O(p(n))

This yields O∗(2.4143n) worst-case time complexity, and
polynomial space.

[9] W. Szwarc and S. Mukhopadhyay (1996), “Decomposition of the single machine total tardiness problem”,

Operations Research Letters 19, 243–250.

T’kindt Exponential Algorithms with applications to scheduling 40 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : the 1|di |
∑

i Ti

By making use of the following property ([9])...

Property

For any pair of adjacent positions (i , i + 1) that can be assigned to
job 1, at least one of them is eliminated.

... we can derive that :

T (n) = 2T (n−1)+2T (n−3)+...+2T (4)+2T (2)+O(p(n))

⇔ T (n) = 2T (n − 1) + T (n − 2) +O(p(n))

This yields O∗(2.4143n) worst-case time complexity, and
polynomial space.

[9] W. Szwarc and S. Mukhopadhyay (1996), “Decomposition of the single machine total tardiness problem”,

Operations Research Letters 19, 243–250.

T’kindt Exponential Algorithms with applications to scheduling 40 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : the 1|di |
∑

i Ti

By making use of the following property ([9])...

Property

For any pair of adjacent positions (i , i + 1) that can be assigned to
job 1, at least one of them is eliminated.

... we can derive that :

T (n) = 2T (n−1)+2T (n−3)+...+2T (4)+2T (2)+O(p(n))

⇔ T (n) = 2T (n − 1) + T (n − 2) +O(p(n))

This yields O∗(2.4143n) worst-case time complexity, and
polynomial space.

[9] W. Szwarc and S. Mukhopadhyay (1996), “Decomposition of the single machine total tardiness problem”,

Operations Research Letters 19, 243–250.

T’kindt Exponential Algorithms with applications to scheduling 40 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : add-ons

Changing the way to do the analysis : Measure and Conquer,

Pruning nodes by use of an exponential memory :
Memo(r)ization,

Pruning nodes without the use of an exponential memory :
Merging,

1|di |
∑

i Ti : O∗(2n) time and poly space when DPAtS uses
O∗(2n) space ([5]).

[5] M. Garraffa, L. Shang, F. Della Croce, V. T’Kindt (2018). An exact exponential branch-and-merge algorithm for

the single machine tardiness problem. Theoretical Computer Science, 745, 133-149.

T’kindt Exponential Algorithms with applications to scheduling 41 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : add-ons

Changing the way to do the analysis : Measure and Conquer,

Pruning nodes by use of an exponential memory :
Memo(r)ization,

Pruning nodes without the use of an exponential memory :
Merging,

1|di |
∑

i Ti : O∗(2n) time and poly space when DPAtS uses
O∗(2n) space ([5]).

[5] M. Garraffa, L. Shang, F. Della Croce, V. T’Kindt (2018). An exact exponential branch-and-merge algorithm for

the single machine tardiness problem. Theoretical Computer Science, 745, 133-149.

T’kindt Exponential Algorithms with applications to scheduling 41 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : add-ons

Changing the way to do the analysis : Measure and Conquer,

Pruning nodes by use of an exponential memory :
Memo(r)ization,

Pruning nodes without the use of an exponential memory :
Merging,

1|di |
∑

i Ti : O∗(2n) time and poly space when DPAtS uses
O∗(2n) space ([5]).

[5] M. Garraffa, L. Shang, F. Della Croce, V. T’Kindt (2018). An exact exponential branch-and-merge algorithm for

the single machine tardiness problem. Theoretical Computer Science, 745, 133-149.

T’kindt Exponential Algorithms with applications to scheduling 41 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : to conclude

BaR sounds like BaB (for instance), however there are
different,

Open question : what would be the practical efficiency of a
BaR with all the materials of a BaB included ? ? ? ?

The complexity analysis can be very complicated (Measure
and Conquer, merging, ...),

It is hard to get tight upper bounds on the worst-case
complexity,

Some researches focus on getting lower bounds on that
complexity,

Important point : leads to polynomial space ETA.

T’kindt Exponential Algorithms with applications to scheduling 42 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : to conclude

BaR sounds like BaB (for instance), however there are
different,

Open question : what would be the practical efficiency of a
BaR with all the materials of a BaB included ? ? ? ?

The complexity analysis can be very complicated (Measure
and Conquer, merging, ...),

It is hard to get tight upper bounds on the worst-case
complexity,

Some researches focus on getting lower bounds on that
complexity,

Important point : leads to polynomial space ETA.

T’kindt Exponential Algorithms with applications to scheduling 42 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : to conclude

BaR sounds like BaB (for instance), however there are
different,

Open question : what would be the practical efficiency of a
BaR with all the materials of a BaB included ? ? ? ?

The complexity analysis can be very complicated (Measure
and Conquer, merging, ...),

It is hard to get tight upper bounds on the worst-case
complexity,

Some researches focus on getting lower bounds on that
complexity,

Important point : leads to polynomial space ETA.

T’kindt Exponential Algorithms with applications to scheduling 42 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : to conclude

BaR sounds like BaB (for instance), however there are
different,

Open question : what would be the practical efficiency of a
BaR with all the materials of a BaB included ? ? ? ?

The complexity analysis can be very complicated (Measure
and Conquer, merging, ...),

It is hard to get tight upper bounds on the worst-case
complexity,

Some researches focus on getting lower bounds on that
complexity,

Important point : leads to polynomial space ETA.

T’kindt Exponential Algorithms with applications to scheduling 42 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : to conclude

BaR sounds like BaB (for instance), however there are
different,

Open question : what would be the practical efficiency of a
BaR with all the materials of a BaB included ? ? ? ?

The complexity analysis can be very complicated (Measure
and Conquer, merging, ...),

It is hard to get tight upper bounds on the worst-case
complexity,

Some researches focus on getting lower bounds on that
complexity,

Important point : leads to polynomial space ETA.

T’kindt Exponential Algorithms with applications to scheduling 42 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : to conclude

BaR sounds like BaB (for instance), however there are
different,

Open question : what would be the practical efficiency of a
BaR with all the materials of a BaB included ? ? ? ?

The complexity analysis can be very complicated (Measure
and Conquer, merging, ...),

It is hard to get tight upper bounds on the worst-case
complexity,

Some researches focus on getting lower bounds on that
complexity,

Important point : leads to polynomial space ETA.

T’kindt Exponential Algorithms with applications to scheduling 42 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : the principles

It is an old technique which consists in sorting“data” to make
the search for an optimal solution more efficient,

It has been proposed by Horowitz and Sahni ([6]) to solve the
knapsack problem,
Let us start with the KNAPSACK problem,

Let be O = {o1, . . . , on} a set of n objects,
Each object oi is defined by a value v(oi) and a weight w(oi),
1 ≤ i ≤ n,
The, integer, capacity W of the knapsack.
Goal : Find O ′ ⊆ O such that

∑
o∈O′ w(o) ≤W and∑

o∈O′ v(o) is maximum.

We can easily show that ENUM is in O∗(2n) time,

[6] E. Horowitz and G. Sahni. Computing partitions with applications to the knapsack problem, Journal of

the ACM, vol 21, pp.277-292, 1974

T’kindt Exponential Algorithms with applications to scheduling 43 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : the principles

It is an old technique which consists in sorting“data” to make
the search for an optimal solution more efficient,

It has been proposed by Horowitz and Sahni ([6]) to solve the
knapsack problem,
Let us start with the KNAPSACK problem,

Let be O = {o1, . . . , on} a set of n objects,
Each object oi is defined by a value v(oi) and a weight w(oi),
1 ≤ i ≤ n,
The, integer, capacity W of the knapsack.
Goal : Find O ′ ⊆ O such that

∑
o∈O′ w(o) ≤W and∑

o∈O′ v(o) is maximum.

We can easily show that ENUM is in O∗(2n) time,

[6] E. Horowitz and G. Sahni. Computing partitions with applications to the knapsack problem, Journal of

the ACM, vol 21, pp.277-292, 1974

T’kindt Exponential Algorithms with applications to scheduling 43 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : the principles

It is an old technique which consists in sorting“data” to make
the search for an optimal solution more efficient,

It has been proposed by Horowitz and Sahni ([6]) to solve the
knapsack problem,
Let us start with the KNAPSACK problem,

Let be O = {o1, . . . , on} a set of n objects,
Each object oi is defined by a value v(oi) and a weight w(oi),
1 ≤ i ≤ n,
The, integer, capacity W of the knapsack.
Goal : Find O ′ ⊆ O such that

∑
o∈O′ w(o) ≤W and∑

o∈O′ v(o) is maximum.

We can easily show that ENUM is in O∗(2n) time,

[6] E. Horowitz and G. Sahni. Computing partitions with applications to the knapsack problem, Journal of

the ACM, vol 21, pp.277-292, 1974

T’kindt Exponential Algorithms with applications to scheduling 43 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : the principles

It is an old technique which consists in sorting“data” to make
the search for an optimal solution more efficient,

It has been proposed by Horowitz and Sahni ([6]) to solve the
knapsack problem,
Let us start with the KNAPSACK problem,

Let be O = {o1, . . . , on} a set of n objects,
Each object oi is defined by a value v(oi) and a weight w(oi),
1 ≤ i ≤ n,
The, integer, capacity W of the knapsack.
Goal : Find O ′ ⊆ O such that

∑
o∈O′ w(o) ≤W and∑

o∈O′ v(o) is maximum.

We can easily show that ENUM is in O∗(2n) time,

[6] E. Horowitz and G. Sahni. Computing partitions with applications to the knapsack problem, Journal of

the ACM, vol 21, pp.277-292, 1974

T’kindt Exponential Algorithms with applications to scheduling 43 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : the principles

The idea is the following : separate the instance into 2
sub-instances,

I1 I2

Instance I

Then, enumerate all partial solutions from I1 and all partial
solutions from I2,

T’kindt Exponential Algorithms with applications to scheduling 44 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : the principles

The idea is the following : separate the instance into 2
sub-instances,

I1 I2

Instance I

Then, enumerate all partial solutions from I1 and all partial
solutions from I2,

I1 I2

Instance IS1

S2

T’kindt Exponential Algorithms with applications to scheduling 44 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : the principles

By recombination of partial solutions, find the optimal
solution of the initial problem

I1 I2

Instance IS1

S2

s1 s2

A complete solution s = s1 + s2

The combinatoric appears when building S1 and S2 by
enumeration (sort phase) and when finding in these sets the
optimal solution (search phase).

T’kindt Exponential Algorithms with applications to scheduling 45 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : the principles

By recombination of partial solutions, find the optimal
solution of the initial problem

I1 I2

Instance IS1

S2

s1 s2

A complete solution s = s1 + s2

The combinatoric appears when building S1 and S2 by
enumeration (sort phase) and when finding in these sets the
optimal solution (search phase).

T’kindt Exponential Algorithms with applications to scheduling 45 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : the principles

The idea : cut the cake into two equal-size pieces and just pay
for one (but take both !),

Let us go back to the KNAPSACK and see how it works on an
example,

We have n = 6, O = {a, b, c, d , e, f } and W = 9.

O a b c d e f

v 3 4 2 5 1 3
w 4 2 1 3 2 5

O1 = {a, b, c} O2 = {d , e, f }

Next, we enumerate the set of all possible assignments for O1

(Table T1),

T1 ∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}∑
v 0 3 4 2 7 5 6 9∑
w 0 4 2 1 6 5 3 7

T’kindt Exponential Algorithms with applications to scheduling 46 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : the principles

The idea : cut the cake into two equal-size pieces and just pay
for one (but take both !),

Let us go back to the KNAPSACK and see how it works on an
example,

We have n = 6, O = {a, b, c, d , e, f } and W = 9.

O a b c d e f

v 3 4 2 5 1 3
w 4 2 1 3 2 5

O1 = {a, b, c} O2 = {d , e, f }

Next, we enumerate the set of all possible assignments for O1

(Table T1),

T1 ∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}∑
v 0 3 4 2 7 5 6 9∑
w 0 4 2 1 6 5 3 7

T’kindt Exponential Algorithms with applications to scheduling 46 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : the principles

The idea : cut the cake into two equal-size pieces and just pay
for one (but take both !),

Let us go back to the KNAPSACK and see how it works on an
example,

We have n = 6, O = {a, b, c, d , e, f } and W = 9.

O a b c d e f

v 3 4 2 5 1 3
w 4 2 1 3 2 5

O1 = {a, b, c} O2 = {d , e, f }

Next, we enumerate the set of all possible assignments for O1

(Table T1),

T1 ∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}∑
v 0 3 4 2 7 5 6 9∑
w 0 4 2 1 6 5 3 7

T’kindt Exponential Algorithms with applications to scheduling 46 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : the principles

The idea : cut the cake into two equal-size pieces and just pay
for one (but take both !),

Let us go back to the KNAPSACK and see how it works on an
example,

We have n = 6, O = {a, b, c, d , e, f } and W = 9.

O a b c d e f

v 3 4 2 5 1 3
w 4 2 1 3 2 5

O1 = {a, b, c} O2 = {d , e, f }

Next, we enumerate the set of all possible assignments for O1

(Table T1),

T1 ∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}∑
v 0 3 4 2 7 5 6 9∑
w 0 4 2 1 6 5 3 7

T’kindt Exponential Algorithms with applications to scheduling 46 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : the principles

Next, we do the same for O2 (Table T2),

T2 ∅ {e} {d} {f } {d , e} {e, f } {d , f } {d , e, f }∑
v 0 1 5 3 6 4 8 9∑
w 0 2 3 5 5 7 8 10

`k 1 2 3 3 5 5 7 8

Note : In table T2, columns are sorted by increasing order of∑
w .

Note : `k is the column number with maximum
∑

v “on the
left” of the current column.

That was the Sort phase !

Running time (and space) should be “about”2n/2,

T’kindt Exponential Algorithms with applications to scheduling 47 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : the principles

Next, we do the same for O2 (Table T2),

T2 ∅ {e} {d} {f } {d , e} {e, f } {d , f } {d , e, f }∑
v 0 1 5 3 6 4 8 9∑
w 0 2 3 5 5 7 8 10

`k 1 2 3 3 5 5 7 8

Note : In table T2, columns are sorted by increasing order of∑
w .

Note : `k is the column number with maximum
∑

v “on the
left” of the current column.

That was the Sort phase !

Running time (and space) should be “about”2n/2,

T’kindt Exponential Algorithms with applications to scheduling 47 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : the principles

Next, we do the same for O2 (Table T2),

T2 ∅ {e} {d} {f } {d , e} {e, f } {d , f } {d , e, f }∑
v 0 1 5 3 6 4 8 9∑
w 0 2 3 5 5 7 8 10

`k 1 2 3 3 5 5 7 8

Note : In table T2, columns are sorted by increasing order of∑
w .

Note : `k is the column number with maximum
∑

v “on the
left” of the current column.

That was the Sort phase !

Running time (and space) should be “about”2n/2,

T’kindt Exponential Algorithms with applications to scheduling 47 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : the principles

Search phase can start,

For any column j ∈ T1, find the “best” complementing column
k ∈ T2,

Best : column k which maximizes
∑

w ... then column `k will
be the one which maximizes

∑
v ,

T’kindt Exponential Algorithms with applications to scheduling 48 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : the principles

Search phase can start,

For any column j ∈ T1, find the “best” complementing column
k ∈ T2,

Best : column k which maximizes
∑

w ... then column `k will
be the one which maximizes

∑
v ,

T’kindt Exponential Algorithms with applications to scheduling 48 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : the principles

Search phase can start,

For any column j ∈ T1, find the “best” complementing column
k ∈ T2,

Best : column k which maximizes
∑

w ... then column `k will
be the one which maximizes

∑
v ,

T’kindt Exponential Algorithms with applications to scheduling 48 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : the principles

Table 1

T1 ∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}∑
v 0 3 4 2 7 5 6 9∑
w 0 4 2 1 6 5 3 7

Table 2

T2 ∅ {e} {d} {f } {d, e} {e, f } {d, f } {d, e, f }∑
v 0 1 5 3 6 4 8 9∑
w 0 2 3 5 5 7 8 10

`k 1 2 3 3 5 5 7 8

Search phase (W = 9)

j ∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}
k {d, f } {d, e} {d, e} {d, f } {d} {d} {d, e} {e}

w(O′j) + w(O′k) 8 9 7 9 9 8 8 9

v(O′j) + v(O′`k
) 8 9 10 10 12 10 12 10

Consequently, the optimal solution has value 12 and is achieved
with {a, b, d} or {b, c, d , e}.

T’kindt Exponential Algorithms with applications to scheduling 49 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : formalization

Sort & Search is a powerfull technique that can be applied to
a lot of problems,

Intuitively, to be applicable efficiently, problems must satisfy
two properties :

1 Two partial solutions can be combined in polynomial time to
get a feasible solution,

2 The Sort phase must enable to lead to a Search phase which
complexity does not exceed the one required to build the
tables.

Sort & Search, as introduced by Horowitz and Sahni, can be
applied to a class of problems called Single Constraint
Problems (SCP),

T’kindt Exponential Algorithms with applications to scheduling 50 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : formalization

Sort & Search is a powerfull technique that can be applied to
a lot of problems,

Intuitively, to be applicable efficiently, problems must satisfy
two properties :

1 Two partial solutions can be combined in polynomial time to
get a feasible solution,

2 The Sort phase must enable to lead to a Search phase which
complexity does not exceed the one required to build the
tables.

Sort & Search, as introduced by Horowitz and Sahni, can be
applied to a class of problems called Single Constraint
Problems (SCP),

T’kindt Exponential Algorithms with applications to scheduling 50 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : formalization

Sort & Search is a powerfull technique that can be applied to
a lot of problems,

Intuitively, to be applicable efficiently, problems must satisfy
two properties :

1 Two partial solutions can be combined in polynomial time to
get a feasible solution,

2 The Sort phase must enable to lead to a Search phase which
complexity does not exceed the one required to build the
tables.

Sort & Search, as introduced by Horowitz and Sahni, can be
applied to a class of problems called Single Constraint
Problems (SCP),

T’kindt Exponential Algorithms with applications to scheduling 50 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : formalization

Sort & Search is a powerfull technique that can be applied to
a lot of problems,

Intuitively, to be applicable efficiently, problems must satisfy
two properties :

1 Two partial solutions can be combined in polynomial time to
get a feasible solution,

2 The Sort phase must enable to lead to a Search phase which
complexity does not exceed the one required to build the
tables.

Sort & Search, as introduced by Horowitz and Sahni, can be
applied to a class of problems called Single Constraint
Problems (SCP),

T’kindt Exponential Algorithms with applications to scheduling 50 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : formalization

Sort & Search is a powerfull technique that can be applied to
a lot of problems,

Intuitively, to be applicable efficiently, problems must satisfy
two properties :

1 Two partial solutions can be combined in polynomial time to
get a feasible solution,

2 The Sort phase must enable to lead to a Search phase which
complexity does not exceed the one required to build the
tables.

Sort & Search, as introduced by Horowitz and Sahni, can be
applied to a class of problems called Single Constraint
Problems (SCP),

T’kindt Exponential Algorithms with applications to scheduling 50 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : formalization

Let be A = (~a1, ~a2, . . . ~anA) a table of nA vectors of
dimension dA,

Let be B = ((b1, b
′
1), (b2, b

′
2) . . . (bnB , b

′
nB

)) a table of nB
couples,

Let f and g ′ be two functions from RdA+1 to R, increasing
with respect to their last variable,

The (SCP) :

Minimize f (~aj , bk)
s.t.

g ′(~aj , b
′
k) ≥ 0

~aj ∈ A, (bk , b
′
k) ∈ B .

There exists a Sort & Search algorithm in
O(nB log2(nB) + nA log2(nB)) time and O(nA + nB) space.

KNAPSACK : nA = nB = 2
n
2 ⇒ O∗(2

n
2) time and space.

T’kindt Exponential Algorithms with applications to scheduling 51 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : formalization

Let be A = (~a1, ~a2, . . . ~anA) a table of nA vectors of
dimension dA,

Let be B = ((b1, b
′
1), (b2, b

′
2) . . . (bnB , b

′
nB

)) a table of nB
couples,

Let f and g ′ be two functions from RdA+1 to R, increasing
with respect to their last variable,

The (SCP) :

Minimize f (~aj , bk)
s.t.

g ′(~aj , b
′
k) ≥ 0

~aj ∈ A, (bk , b
′
k) ∈ B .

There exists a Sort & Search algorithm in
O(nB log2(nB) + nA log2(nB)) time and O(nA + nB) space.

KNAPSACK : nA = nB = 2
n
2 ⇒ O∗(2

n
2) time and space.

T’kindt Exponential Algorithms with applications to scheduling 51 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : formalization

Let be A = (~a1, ~a2, . . . ~anA) a table of nA vectors of
dimension dA,

Let be B = ((b1, b
′
1), (b2, b

′
2) . . . (bnB , b

′
nB

)) a table of nB
couples,

Let f and g ′ be two functions from RdA+1 to R, increasing
with respect to their last variable,

The (SCP) :

Minimize f (~aj , bk)
s.t.

g ′(~aj , b
′
k) ≥ 0

~aj ∈ A, (bk , b
′
k) ∈ B .

There exists a Sort & Search algorithm in
O(nB log2(nB) + nA log2(nB)) time and O(nA + nB) space.

KNAPSACK : nA = nB = 2
n
2 ⇒ O∗(2

n
2) time and space.

T’kindt Exponential Algorithms with applications to scheduling 51 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : generalization

We can extend the original Sort & Search approach to
Multiple Constraint Problems (MCP),

Let be A = (~a1, ~a2, . . . ~anA) a table of nA vectors of
dimension dA,

Let be B = (~b1, ~b2, . . .~bnB
) a table of nB vectors

~bk = (b0k , b
1
k , . . . , b

dB
k) of dimension dB + 1,

Let f and g` (1 ≤ ` ≤ dB) be dB + 1 functions from RdA+1 to
R (increasing with respect to their last variable),

The (MCP) is defined by :

Minimize f (~aj , b
0
k)

s.t.
g`(~aj , b

`
k) ≥ 0, (1 ≤ ` ≤ dB)

~aj ∈ A, ~bk ∈ B .

T’kindt Exponential Algorithms with applications to scheduling 52 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : generalization

We can extend the original Sort & Search approach to
Multiple Constraint Problems (MCP),

Let be A = (~a1, ~a2, . . . ~anA) a table of nA vectors of
dimension dA,

Let be B = (~b1, ~b2, . . .~bnB
) a table of nB vectors

~bk = (b0k , b
1
k , . . . , b

dB
k) of dimension dB + 1,

Let f and g` (1 ≤ ` ≤ dB) be dB + 1 functions from RdA+1 to
R (increasing with respect to their last variable),

The (MCP) is defined by :

Minimize f (~aj , b
0
k)

s.t.
g`(~aj , b

`
k) ≥ 0, (1 ≤ ` ≤ dB)

~aj ∈ A, ~bk ∈ B .

T’kindt Exponential Algorithms with applications to scheduling 52 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : generalization

We can extend the original Sort & Search approach to
Multiple Constraint Problems (MCP),

Let be A = (~a1, ~a2, . . . ~anA) a table of nA vectors of
dimension dA,

Let be B = (~b1, ~b2, . . .~bnB
) a table of nB vectors

~bk = (b0k , b
1
k , . . . , b

dB
k) of dimension dB + 1,

Let f and g` (1 ≤ ` ≤ dB) be dB + 1 functions from RdA+1 to
R (increasing with respect to their last variable),

The (MCP) is defined by :

Minimize f (~aj , b
0
k)

s.t.
g`(~aj , b

`
k) ≥ 0, (1 ≤ ` ≤ dB)

~aj ∈ A, ~bk ∈ B .

T’kindt Exponential Algorithms with applications to scheduling 52 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : generalization

We can extend the original Sort & Search approach to
Multiple Constraint Problems (MCP),

Let be A = (~a1, ~a2, . . . ~anA) a table of nA vectors of
dimension dA,

Let be B = (~b1, ~b2, . . .~bnB
) a table of nB vectors

~bk = (b0k , b
1
k , . . . , b

dB
k) of dimension dB + 1,

Let f and g` (1 ≤ ` ≤ dB) be dB + 1 functions from RdA+1 to
R (increasing with respect to their last variable),

The (MCP) is defined by :

Minimize f (~aj , b
0
k)

s.t.
g`(~aj , b

`
k) ≥ 0, (1 ≤ ` ≤ dB)

~aj ∈ A, ~bk ∈ B .

T’kindt Exponential Algorithms with applications to scheduling 52 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : generalization

We can extend the original Sort & Search approach to
Multiple Constraint Problems (MCP),

Let be A = (~a1, ~a2, . . . ~anA) a table of nA vectors of
dimension dA,

Let be B = (~b1, ~b2, . . .~bnB
) a table of nB vectors

~bk = (b0k , b
1
k , . . . , b

dB
k) of dimension dB + 1,

Let f and g` (1 ≤ ` ≤ dB) be dB + 1 functions from RdA+1 to
R (increasing with respect to their last variable),

The (MCP) is defined by :

Minimize f (~aj , b
0
k)

s.t.
g`(~aj , b

`
k) ≥ 0, (1 ≤ ` ≤ dB)

~aj ∈ A, ~bk ∈ B .

T’kindt Exponential Algorithms with applications to scheduling 52 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : generalization

By means of appropriate data structures (range trees) and
properties on rectangular range queries...

... we can establish a Sort & Search algorithm in
O(nB logdB2 (nB) + nA logdB+2

2 (nB)) time and

O(nB logdB−12 (nB)) space ([4]).

[4] C. Lente, M. Liedloff, A. Soukhal and V. T’kindt. On an extension of the Sort & Search method with

application to scheduling theory, Theoretical Computer Science, vol 511, pp. 13-22, 2013.

T’kindt Exponential Algorithms with applications to scheduling 53 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : generalization

By means of appropriate data structures (range trees) and
properties on rectangular range queries...

... we can establish a Sort & Search algorithm in
O(nB logdB2 (nB) + nA logdB+2

2 (nB)) time and

O(nB logdB−12 (nB)) space ([4]).

[4] C. Lente, M. Liedloff, A. Soukhal and V. T’kindt. On an extension of the Sort & Search method with

application to scheduling theory, Theoretical Computer Science, vol 511, pp. 13-22, 2013.

T’kindt Exponential Algorithms with applications to scheduling 53 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application

Consider the P3||Cmax scheduling problem :

3 identical machines are available to process n jobs,
Each job i is defined by a processing time pi and can be
processed by any of the 3 machines,
Find a schedule which minimizes the makespan
Cmax = maxi(Ci) with Ci the completion time of job i .

This problem is NP-hard.

The worst-case time complexity of ENUM is in O∗(3n),

T’kindt Exponential Algorithms with applications to scheduling 54 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application

Consider the P3||Cmax scheduling problem :

3 identical machines are available to process n jobs,
Each job i is defined by a processing time pi and can be
processed by any of the 3 machines,
Find a schedule which minimizes the makespan
Cmax = maxi(Ci) with Ci the completion time of job i .

This problem is NP-hard.

The worst-case time complexity of ENUM is in O∗(3n),

T’kindt Exponential Algorithms with applications to scheduling 54 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application

Consider the P3||Cmax scheduling problem :

3 identical machines are available to process n jobs,
Each job i is defined by a processing time pi and can be
processed by any of the 3 machines,
Find a schedule which minimizes the makespan
Cmax = maxi(Ci) with Ci the completion time of job i .

This problem is NP-hard.

The worst-case time complexity of ENUM is in O∗(3n),

T’kindt Exponential Algorithms with applications to scheduling 54 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application (main lines)

Let I be an instance with n jobs given in a set J ,

Let I1 = {1, . . . ,
⌊
n
2

⌋
} be the subset of the

⌊
n
2

⌋
first job of J ,

Let I2 = {
⌊
n
2

⌋
+ 1, . . . ,n} be the subset of the

⌈
n
2

⌉
last job

of J ,

Let be E j1 = (E j
1,1,E

j
1,2,E

j
1,3) a 3-partition of I1

(1 ≤ j ≤ 3|I1|),

We associate to it a schedule s j1 containing the sequence of
jobs on machines,

Similarly, let be Ek2 a 3-partition of I2 (1 ≤ j ≤ 3|I2|),

We associate to it a schedule sk2 containing the sequence of
jobs on machines,

T’kindt Exponential Algorithms with applications to scheduling 55 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application (main lines)

Let I be an instance with n jobs given in a set J ,

Let I1 = {1, . . . ,
⌊
n
2

⌋
} be the subset of the

⌊
n
2

⌋
first job of J ,

Let I2 = {
⌊
n
2

⌋
+ 1, . . . ,n} be the subset of the

⌈
n
2

⌉
last job

of J ,

Let be E j1 = (E j
1,1,E

j
1,2,E

j
1,3) a 3-partition of I1

(1 ≤ j ≤ 3|I1|),

We associate to it a schedule s j1 containing the sequence of
jobs on machines,

Similarly, let be Ek2 a 3-partition of I2 (1 ≤ j ≤ 3|I2|),

We associate to it a schedule sk2 containing the sequence of
jobs on machines,

T’kindt Exponential Algorithms with applications to scheduling 55 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application (main lines)

Let I be an instance with n jobs given in a set J ,

Let I1 = {1, . . . ,
⌊
n
2

⌋
} be the subset of the

⌊
n
2

⌋
first job of J ,

Let I2 = {
⌊
n
2

⌋
+ 1, . . . ,n} be the subset of the

⌈
n
2

⌉
last job

of J ,

Let be E j1 = (E j
1,1,E

j
1,2,E

j
1,3) a 3-partition of I1

(1 ≤ j ≤ 3|I1|),

We associate to it a schedule s j1 containing the sequence of
jobs on machines,

Similarly, let be Ek2 a 3-partition of I2 (1 ≤ j ≤ 3|I2|),

We associate to it a schedule sk2 containing the sequence of
jobs on machines,

T’kindt Exponential Algorithms with applications to scheduling 55 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application (main lines)

Let I be an instance with n jobs given in a set J ,

Let I1 = {1, . . . ,
⌊
n
2

⌋
} be the subset of the

⌊
n
2

⌋
first job of J ,

Let I2 = {
⌊
n
2

⌋
+ 1, . . . ,n} be the subset of the

⌈
n
2

⌉
last job

of J ,

Let be E j1 = (E j
1,1,E

j
1,2,E

j
1,3) a 3-partition of I1

(1 ≤ j ≤ 3|I1|),

We associate to it a schedule s j1 containing the sequence of
jobs on machines,

Similarly, let be Ek2 a 3-partition of I2 (1 ≤ j ≤ 3|I2|),

We associate to it a schedule sk2 containing the sequence of
jobs on machines,

T’kindt Exponential Algorithms with applications to scheduling 55 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application (main lines)

Let I be an instance with n jobs given in a set J ,

Let I1 = {1, . . . ,
⌊
n
2

⌋
} be the subset of the

⌊
n
2

⌋
first job of J ,

Let I2 = {
⌊
n
2

⌋
+ 1, . . . ,n} be the subset of the

⌈
n
2

⌉
last job

of J ,

Let be E j1 = (E j
1,1,E

j
1,2,E

j
1,3) a 3-partition of I1

(1 ≤ j ≤ 3|I1|),

We associate to it a schedule s j1 containing the sequence of
jobs on machines,

Similarly, let be Ek2 a 3-partition of I2 (1 ≤ j ≤ 3|I2|),

We associate to it a schedule sk2 containing the sequence of
jobs on machines,

T’kindt Exponential Algorithms with applications to scheduling 55 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application (main lines)

Let I be an instance with n jobs given in a set J ,

Let I1 = {1, . . . ,
⌊
n
2

⌋
} be the subset of the

⌊
n
2

⌋
first job of J ,

Let I2 = {
⌊
n
2

⌋
+ 1, . . . ,n} be the subset of the

⌈
n
2

⌉
last job

of J ,

Let be E j1 = (E j
1,1,E

j
1,2,E

j
1,3) a 3-partition of I1

(1 ≤ j ≤ 3|I1|),

We associate to it a schedule s j1 containing the sequence of
jobs on machines,

Similarly, let be Ek2 a 3-partition of I2 (1 ≤ j ≤ 3|I2|),

We associate to it a schedule sk2 containing the sequence of
jobs on machines,

T’kindt Exponential Algorithms with applications to scheduling 55 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application (main lines)

Let I be an instance with n jobs given in a set J ,

Let I1 = {1, . . . ,
⌊
n
2

⌋
} be the subset of the

⌊
n
2

⌋
first job of J ,

Let I2 = {
⌊
n
2

⌋
+ 1, . . . ,n} be the subset of the

⌈
n
2

⌉
last job

of J ,

Let be E j1 = (E j
1,1,E

j
1,2,E

j
1,3) a 3-partition of I1

(1 ≤ j ≤ 3|I1|),

We associate to it a schedule s j1 containing the sequence of
jobs on machines,

Similarly, let be Ek2 a 3-partition of I2 (1 ≤ j ≤ 3|I2|),

We associate to it a schedule sk2 containing the sequence of
jobs on machines,

T’kindt Exponential Algorithms with applications to scheduling 55 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application (main lines)

Let I be an instance with n jobs given in a set J ,

Let I1 = {1, . . . ,
⌊
n
2

⌋
} be the subset of the

⌊
n
2

⌋
first job of J ,

Let I2 = {
⌊
n
2

⌋
+ 1, . . . ,n} be the subset of the

⌈
n
2

⌉
last job

of J ,

Let be E j1 = (E j
1,1,E

j
1,2,E

j
1,3) a 3-partition of I1

(1 ≤ j ≤ 3|I1|),

We associate to it a schedule s j1 containing the sequence of
jobs on machines,

Similarly, let be Ek2 a 3-partition of I2 (1 ≤ j ≤ 3|I2|),

We associate to it a schedule sk2 containing the sequence of
jobs on machines,

T’kindt Exponential Algorithms with applications to scheduling 56 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application (main lines)

Let I be an instance with n jobs given in a set J ,

Let I1 = {1, . . . ,
⌊
n
2

⌋
} be the subset of the

⌊
n
2

⌋
first job of J ,

Let I2 = {
⌊
n
2

⌋
+ 1, . . . ,n} be the subset of the

⌈
n
2

⌉
last job

of J ,

Let be E j1 = (E j
1,1,E

j
1,2,E

j
1,3) a 3-partition of I1

(1 ≤ j ≤ 3|I1|),

We associate to it a schedule s j1 containing the sequence of
jobs on machines,

Similarly, let be Ek2 a 3-partition of I2 (1 ≤ j ≤ 3|I2|),

We associate to it a schedule sk2 containing the sequence of
jobs on machines,

T’kindt Exponential Algorithms with applications to scheduling 56 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application (main lines)

Let I be an instance with n jobs given in a set J ,

Let I1 = {1, . . . ,
⌊
n
2

⌋
} be the subset of the

⌊
n
2

⌋
first job of J ,

Let I2 = {
⌊
n
2

⌋
+ 1, . . . ,n} be the subset of the

⌈
n
2

⌉
last job

of J ,

Let be E j1 = (E j
1,1,E

j
1,2,E

j
1,3) a 3-partition of I1

(1 ≤ j ≤ 3|I1|),

We associate to it a schedule s j1 containing the sequence of
jobs on machines,

Similarly, let be Ek2 a 3-partition of I2 (1 ≤ j ≤ 3|I2|),

We associate to it a schedule sk2 containing the sequence of
jobs on machines,

T’kindt Exponential Algorithms with applications to scheduling 56 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application (main lines)

Let I be an instance with n jobs given in a set J ,

Let I1 = {1, . . . ,
⌊
n
2

⌋
} be the subset of the

⌊
n
2

⌋
first job of J ,

Let I2 = {
⌊
n
2

⌋
+ 1, . . . ,n} be the subset of the

⌈
n
2

⌉
last job

of J ,

Let be E j1 = (E j
1,1,E

j
1,2,E

j
1,3) a 3-partition of I1

(1 ≤ j ≤ 3|I1|),

We associate to it a schedule s j1 containing the sequence of
jobs on machines,

Similarly, let be Ek2 a 3-partition of I2 (1 ≤ j ≤ 3|I2|),

We associate to it a schedule sk2 containing the sequence of
jobs on machines,

T’kindt Exponential Algorithms with applications to scheduling 56 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application (main lines)

Let I be an instance with n jobs given in a set J ,

Let I1 = {1, . . . ,
⌊
n
2

⌋
} be the subset of the

⌊
n
2

⌋
first job of J ,

Let I2 = {
⌊
n
2

⌋
+ 1, . . . ,n} be the subset of the

⌈
n
2

⌉
last job

of J ,

Let be E j1 = (E j
1,1,E

j
1,2,E

j
1,3) a 3-partition of I1

(1 ≤ j ≤ 3|I1|),

We associate to it a schedule s j1 containing the sequence of
jobs on machines,

Similarly, let be Ek2 a 3-partition of I2 (1 ≤ j ≤ 3|I2|),

We associate to it a schedule sk2 containing the sequence of
jobs on machines,

T’kindt Exponential Algorithms with applications to scheduling 56 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application (main lines)

Let I be an instance with n jobs given in a set J ,

Let I1 = {1, . . . ,
⌊
n
2

⌋
} be the subset of the

⌊
n
2

⌋
first job of J ,

Let I2 = {
⌊
n
2

⌋
+ 1, . . . ,n} be the subset of the

⌈
n
2

⌉
last job

of J ,

Let be E j1 = (E j
1,1,E

j
1,2,E

j
1,3) a 3-partition of I1

(1 ≤ j ≤ 3|I1|),

We associate to it a schedule s j1 containing the sequence of
jobs on machines,

Similarly, let be Ek2 a 3-partition of I2 (1 ≤ j ≤ 3|I2|),

We associate to it a schedule sk2 containing the sequence of
jobs on machines,

T’kindt Exponential Algorithms with applications to scheduling 56 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application (main lines)

Let I be an instance with n jobs given in a set J ,

Let I1 = {1, . . . ,
⌊
n
2

⌋
} be the subset of the

⌊
n
2

⌋
first job of J ,

Let I2 = {
⌊
n
2

⌋
+ 1, . . . ,n} be the subset of the

⌈
n
2

⌉
last job

of J ,

Let be E j1 = (E j
1,1,E

j
1,2,E

j
1,3) a 3-partition of I1

(1 ≤ j ≤ 3|I1|),

We associate to it a schedule s j1 containing the sequence of
jobs on machines,

Similarly, let be Ek2 a 3-partition of I2 (1 ≤ j ≤ 3|I2|),

We associate to it a schedule sk2 containing the sequence of
jobs on machines,

T’kindt Exponential Algorithms with applications to scheduling 56 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application

The situation is pictured below (s1 comes from I1, s2 comes
from I2),

Let us state some necessary properties,

Let P`(s) be the sum of processing times of jobs assigned to
machine ` in s, ` ∈ J1, 3K,

Let P(s) be the sum of processing times of all jobs of s,

T’kindt Exponential Algorithms with applications to scheduling 57 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application

The situation is pictured below (s1 comes from I1, s2 comes
from I2),

Let us state some necessary properties,

Let P`(s) be the sum of processing times of jobs assigned to
machine ` in s, ` ∈ J1, 3K,

Let P(s) be the sum of processing times of all jobs of s,

T’kindt Exponential Algorithms with applications to scheduling 57 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application

The situation is pictured below (s1 comes from I1, s2 comes
from I2),

Let us state some necessary properties,

Let P`(s) be the sum of processing times of jobs assigned to
machine ` in s, ` ∈ J1, 3K,

Let P(s) be the sum of processing times of all jobs of s,

T’kindt Exponential Algorithms with applications to scheduling 57 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application

The situation is pictured below (s1 comes from I1, s2 comes
from I2),

Let us state some necessary properties,

Let P`(s) be the sum of processing times of jobs assigned to
machine ` in s, ` ∈ J1, 3K,

Let P(s) be the sum of processing times of all jobs of s,

T’kindt Exponential Algorithms with applications to scheduling 57 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application

Let us define δ`(s) = P3(s)− P`(s) as the difference between
the load of the last machine and machine `,
We have :

P(s) =
∑3
`=1 P`(s),∑2

`=1 δ`(s) =
∑3
`=1 δ`(s) = 3P3(s)− P(s).

Without loss of generality we can restrict to schedule where
the last machine gives the Cmax value,
Now, let us concentrate on the concatenation of two partial
schedules s and σ,
We have : Cmax (sσ) = max1≤`≤3 (P`(s) + P`(σ)),

T’kindt Exponential Algorithms with applications to scheduling 58 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application

Let us define δ`(s) = P3(s)− P`(s) as the difference between
the load of the last machine and machine `,
We have :

P(s) =
∑3
`=1 P`(s),∑2

`=1 δ`(s) =
∑3
`=1 δ`(s) = 3P3(s)− P(s).

Without loss of generality we can restrict to schedule where
the last machine gives the Cmax value,
Now, let us concentrate on the concatenation of two partial
schedules s and σ,
We have : Cmax (sσ) = max1≤`≤3 (P`(s) + P`(σ)),

T’kindt Exponential Algorithms with applications to scheduling 58 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application

Let us define δ`(s) = P3(s)− P`(s) as the difference between
the load of the last machine and machine `,
We have :

P(s) =
∑3
`=1 P`(s),∑2

`=1 δ`(s) =
∑3
`=1 δ`(s) = 3P3(s)− P(s).

Without loss of generality we can restrict to schedule where
the last machine gives the Cmax value,
Now, let us concentrate on the concatenation of two partial
schedules s and σ,
We have : Cmax (sσ) = max1≤`≤3 (P`(s) + P`(σ)),

T’kindt Exponential Algorithms with applications to scheduling 58 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application

Let us define δ`(s) = P3(s)− P`(s) as the difference between
the load of the last machine and machine `,
We have :

P(s) =
∑3
`=1 P`(s),∑2

`=1 δ`(s) =
∑3
`=1 δ`(s) = 3P3(s)− P(s).

Without loss of generality we can restrict to schedule where
the last machine gives the Cmax value,
Now, let us concentrate on the concatenation of two partial
schedules s and σ,
We have : Cmax (sσ) = max1≤`≤3 (P`(s) + P`(σ)),

T’kindt Exponential Algorithms with applications to scheduling 58 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application

Let us define δ`(s) = P3(s)− P`(s) as the difference between
the load of the last machine and machine `,
We have :

P(s) =
∑3
`=1 P`(s),∑2

`=1 δ`(s) =
∑3
`=1 δ`(s) = 3P3(s)− P(s).

Without loss of generality we can restrict to schedule where
the last machine gives the Cmax value,
Now, let us concentrate on the concatenation of two partial
schedules s and σ,
We have : Cmax (sσ) = max1≤`≤3 (P`(s) + P`(σ)),

T’kindt Exponential Algorithms with applications to scheduling 58 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application

Let us define δ`(s) = P3(s)− P`(s) as the difference between
the load of the last machine and machine `,
We have :

P(s) =
∑3
`=1 P`(s),∑2

`=1 δ`(s) =
∑3
`=1 δ`(s) = 3P3(s)− P(s).

Without loss of generality we can restrict to schedule where
the last machine gives the Cmax value,
Now, let us concentrate on the concatenation of two partial
schedules s and σ,
We have : Cmax (sσ) = max1≤`≤3 (P`(s) + P`(σ)),

T’kindt Exponential Algorithms with applications to scheduling 58 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application

Let us define δ`(s) = P3(s)− P`(s) as the difference between
the load of the last machine and machine `,
We have :

P(s) =
∑3
`=1 P`(s),∑2

`=1 δ`(s) =
∑3
`=1 δ`(s) = 3P3(s)− P(s).

Without loss of generality we can restrict to schedule where
the last machine gives the Cmax value,
Now, let us concentrate on the concatenation of two partial
schedules s and σ,
We have : Cmax (sσ) = max1≤`≤3 (P`(s) + P`(σ)),

T’kindt Exponential Algorithms with applications to scheduling 58 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application

We can show that the makespan of sσ is given by the last
machine iff (constraint) :

∀` ∈ J1, 2K, δ`(s) + δ`(σ) ≥ 0

Then, we have Cmax (sσ) = P3(s) + P3(σ) which can be
rewritten as (objective) :

Cmax (sσ) =
1
3

(
P(s) + P(σ) +

∑2
`=1(δ`(s) + δ`(σ))

)
.

T’kindt Exponential Algorithms with applications to scheduling 59 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application

We can show that the makespan of sσ is given by the last
machine iff (constraint) :

∀` ∈ J1, 2K, δ`(s) + δ`(σ) ≥ 0

Then, we have Cmax (sσ) = P3(s) + P3(σ) which can be
rewritten as (objective) :

Cmax (sσ) =
1
3

(
P(s) + P(σ) +

∑2
`=1(δ`(s) + δ`(σ))

)
.

T’kindt Exponential Algorithms with applications to scheduling 59 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application

Reformulation

A schedule sσ is optimal for the P3||Cmax problem, iff the couple
(s,σ) is an optimal solution of the following problem :

Minimise
∑2

`=1 δ`(s) + δ`(σ)

s.t. ∀` ∈ J1, 2K, δ`(s) + δ`(σ) ≥ 0

T’kindt Exponential Algorithms with applications to scheduling 60 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application (main lines)



~aj = (δ1(s
j
1), δ2(s

j
1))

(b0k , b
1
k , b

2
k) = (δ1(s

k
2) + δ2(s

k
2), δ1(s

k
2), δ2(s

k
2))

f (~aj , b
0
k) = (P + δ1(s

j
1) + δ2(s

j
1) + δ1(s

k
2) + δ2(s

k
2))/3

g1(~aj , b
1
k) = δ1(s

j
1) + δ1(s

k
2)

g2(~aj , b
2
k) = δ2(s

j
1) + δ2(s

k
2)

(1)
Besides f , g1 are g2 increasing function with respect to their last
variable.

T’kindt Exponential Algorithms with applications to scheduling 61 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application

The complexity of Sort & Search is in
O(nB logdB2 (nB) + nA logdB+2

2 (nB)) time,

Starting from I1 and I2, tables A and B have respectively
nA = nB = 3

n
2 columns,

Besides, dA = 2, and dB = 2

Then, the worst-case time complexity is in
O(3

n
2 log22(3

n
2) + 3

n
2 log42(3

n
2)) = O∗(3

n
2) ≈ O∗(1.7321n).

T’kindt Exponential Algorithms with applications to scheduling 62 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application

The complexity of Sort & Search is in
O(nB logdB2 (nB) + nA logdB+2

2 (nB)) time,

Starting from I1 and I2, tables A and B have respectively
nA = nB = 3

n
2 columns,

Besides, dA = 2, and dB = 2

Then, the worst-case time complexity is in
O(3

n
2 log22(3

n
2) + 3

n
2 log42(3

n
2)) = O∗(3

n
2) ≈ O∗(1.7321n).

T’kindt Exponential Algorithms with applications to scheduling 62 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application

The complexity of Sort & Search is in
O(nB logdB2 (nB) + nA logdB+2

2 (nB)) time,

Starting from I1 and I2, tables A and B have respectively
nA = nB = 3

n
2 columns,

Besides, dA = 2, and dB = 2

Then, the worst-case time complexity is in
O(3

n
2 log22(3

n
2) + 3

n
2 log42(3

n
2)) = O∗(3

n
2) ≈ O∗(1.7321n).

T’kindt Exponential Algorithms with applications to scheduling 62 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application

The complexity of Sort & Search is in
O(nB logdB2 (nB) + nA logdB+2

2 (nB)) time,

Starting from I1 and I2, tables A and B have respectively
nA = nB = 3

n
2 columns,

Besides, dA = 2, and dB = 2

Then, the worst-case time complexity is in
O(3

n
2 log22(3

n
2) + 3

n
2 log42(3

n
2)) = O∗(3

n
2) ≈ O∗(1.7321n).

T’kindt Exponential Algorithms with applications to scheduling 62 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : to conclude

Sort & Search is an interesting technique for deriving “quickly”
E-ETA,

Requires exponential space,

In scheduling, it is usable for parallel machine scheduling
problems.

T’kindt Exponential Algorithms with applications to scheduling 63 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : to conclude

Sort & Search is an interesting technique for deriving “quickly”
E-ETA,

Requires exponential space,

In scheduling, it is usable for parallel machine scheduling
problems.

T’kindt Exponential Algorithms with applications to scheduling 63 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : to conclude

Sort & Search is an interesting technique for deriving “quickly”
E-ETA,

Requires exponential space,

In scheduling, it is usable for parallel machine scheduling
problems.

T’kindt Exponential Algorithms with applications to scheduling 63 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Time to conclude on E-ETA

A theoretical and nice research area,

Helps in understanding what makes a problem hard to be
solved,

It’s emerging in scheduling literature (problems are difficult),

With respect to the three techniques introduced in this talk :

Sort & Search seems to be applicable when the combinatorics
is only induced by “assignment decisions”,
Branch & Reduce and Dynamic Programming are more
suitable for permutation problems,
It is challenging to design reduction rules in Branch & Reduce
algorithms.

T’kindt Exponential Algorithms with applications to scheduling 64 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Time to conclude on E-ETA

A theoretical and nice research area,

Helps in understanding what makes a problem hard to be
solved,

It’s emerging in scheduling literature (problems are difficult),

With respect to the three techniques introduced in this talk :

Sort & Search seems to be applicable when the combinatorics
is only induced by “assignment decisions”,
Branch & Reduce and Dynamic Programming are more
suitable for permutation problems,
It is challenging to design reduction rules in Branch & Reduce
algorithms.

T’kindt Exponential Algorithms with applications to scheduling 64 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Time to conclude on E-ETA

A theoretical and nice research area,

Helps in understanding what makes a problem hard to be
solved,

It’s emerging in scheduling literature (problems are difficult),

With respect to the three techniques introduced in this talk :

Sort & Search seems to be applicable when the combinatorics
is only induced by “assignment decisions”,
Branch & Reduce and Dynamic Programming are more
suitable for permutation problems,
It is challenging to design reduction rules in Branch & Reduce
algorithms.

T’kindt Exponential Algorithms with applications to scheduling 64 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Time to conclude on E-ETA

A theoretical and nice research area,

Helps in understanding what makes a problem hard to be
solved,

It’s emerging in scheduling literature (problems are difficult),

With respect to the three techniques introduced in this talk :

Sort & Search seems to be applicable when the combinatorics
is only induced by “assignment decisions”,
Branch & Reduce and Dynamic Programming are more
suitable for permutation problems,
It is challenging to design reduction rules in Branch & Reduce
algorithms.

T’kindt Exponential Algorithms with applications to scheduling 64 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Time to conclude on E-ETA

A theoretical and nice research area,

Helps in understanding what makes a problem hard to be
solved,

It’s emerging in scheduling literature (problems are difficult),

With respect to the three techniques introduced in this talk :

Sort & Search seems to be applicable when the combinatorics
is only induced by “assignment decisions”,
Branch & Reduce and Dynamic Programming are more
suitable for permutation problems,
It is challenging to design reduction rules in Branch & Reduce
algorithms.

T’kindt Exponential Algorithms with applications to scheduling 64 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Time to conclude on E-ETA

A theoretical and nice research area,

Helps in understanding what makes a problem hard to be
solved,

It’s emerging in scheduling literature (problems are difficult),

With respect to the three techniques introduced in this talk :

Sort & Search seems to be applicable when the combinatorics
is only induced by “assignment decisions”,
Branch & Reduce and Dynamic Programming are more
suitable for permutation problems,
It is challenging to design reduction rules in Branch & Reduce
algorithms.

T’kindt Exponential Algorithms with applications to scheduling 64 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Time to conclude on E-ETA

A theoretical and nice research area,

Helps in understanding what makes a problem hard to be
solved,

It’s emerging in scheduling literature (problems are difficult),

With respect to the three techniques introduced in this talk :

Sort & Search seems to be applicable when the combinatorics
is only induced by “assignment decisions”,
Branch & Reduce and Dynamic Programming are more
suitable for permutation problems,
It is challenging to design reduction rules in Branch & Reduce
algorithms.

T’kindt Exponential Algorithms with applications to scheduling 64 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

1 Introduction

2 Exact Exponential-Time Algorithms

3 Heuristic Exponential-Time Algorithms

4 Conclusions

T’kindt Exponential Algorithms with applications to scheduling 65 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About the problem

Definition

Given n jobs : N = {1, . . . ,n}, m parallel identical machines, each
job i has a processing time pi and a due date di . Determine the
job sequence on each machine which minimizes

∑
i Ui , with

Ui = 1 if job i is tardy ; 0 otherwise.

Problem denoted by P |di |
∑

i Ui .

NP-hard (Garey and Johnson, 1979), even in the case m = 2.

The question we had : can we approximate optimal solutions
for this problem ?

We focus on the approximation ratio of an heuristic H :

ρ =
∑

i U
H
i∑

i U
∗
i

T’kindt Exponential Algorithms with applications to scheduling 66 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About the problem

Definition

Given n jobs : N = {1, . . . ,n}, m parallel identical machines, each
job i has a processing time pi and a due date di . Determine the
job sequence on each machine which minimizes

∑
i Ui , with

Ui = 1 if job i is tardy ; 0 otherwise.

Problem denoted by P |di |
∑

i Ui .

NP-hard (Garey and Johnson, 1979), even in the case m = 2.

The question we had : can we approximate optimal solutions
for this problem ?

We focus on the approximation ratio of an heuristic H :

ρ =
∑

i U
H
i∑

i U
∗
i

T’kindt Exponential Algorithms with applications to scheduling 66 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About the problem

Definition

Given n jobs : N = {1, . . . ,n}, m parallel identical machines, each
job i has a processing time pi and a due date di . Determine the
job sequence on each machine which minimizes

∑
i Ui , with

Ui = 1 if job i is tardy ; 0 otherwise.

Problem denoted by P |di |
∑

i Ui .

NP-hard (Garey and Johnson, 1979), even in the case m = 2.

The question we had : can we approximate optimal solutions
for this problem ?

We focus on the approximation ratio of an heuristic H :

ρ =
∑

i U
H
i∑

i U
∗
i

T’kindt Exponential Algorithms with applications to scheduling 66 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About the problem

Definition

Given n jobs : N = {1, . . . ,n}, m parallel identical machines, each
job i has a processing time pi and a due date di . Determine the
job sequence on each machine which minimizes

∑
i Ui , with

Ui = 1 if job i is tardy ; 0 otherwise.

Problem denoted by P |di |
∑

i Ui .

NP-hard (Garey and Johnson, 1979), even in the case m = 2.

The question we had : can we approximate optimal solutions
for this problem ?

We focus on the approximation ratio of an heuristic H :

ρ =
∑

i U
H
i∑

i U
∗
i

T’kindt Exponential Algorithms with applications to scheduling 66 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About the problem

First result : Problem P2|di |
∑

i Ui does not admit a
polynomial-time approximation algorithm with a bounded
ratio ρ.

Deciding the existence of a schedule with
∑

i U
∗
i = 0 is

NP-hard.

What can we do if we pay for exponential computation time :
can we approximate in a moderately exponential time the
P |di |

∑
i Ui problem ?

T’kindt Exponential Algorithms with applications to scheduling 67 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About the problem

First result : Problem P2|di |
∑

i Ui does not admit a
polynomial-time approximation algorithm with a bounded
ratio ρ.

Deciding the existence of a schedule with
∑

i U
∗
i = 0 is

NP-hard.

What can we do if we pay for exponential computation time :
can we approximate in a moderately exponential time the
P |di |

∑
i Ui problem ?

T’kindt Exponential Algorithms with applications to scheduling 67 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About the problem

First result : Problem P2|di |
∑

i Ui does not admit a
polynomial-time approximation algorithm with a bounded
ratio ρ.

Deciding the existence of a schedule with
∑

i U
∗
i = 0 is

NP-hard.

What can we do if we pay for exponential computation time :
can we approximate in a moderately exponential time the
P |di |

∑
i Ui problem ?

T’kindt Exponential Algorithms with applications to scheduling 67 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Approximation Algorithms

Generality

For NP-hard minimization problems, polynomial-time heuristic
algorithms H with a worst-case guarantee :

Fixed ratio : Z H

Z Opt ≤ ρ and polynomial time in input length,

PTAS : Z H

Z Opt ≤ (1 + ε) and polynomial time in input length
when ε is fixed,

FPTAS : Z H

Z Opt ≤ (1 + ε) and polynomial time both in input
length and 1

ε .

A large part of the scheduling literature...

Few works on approximation with moderately exponential
computation time (Sevastianov and Woeginger (1998), Hall
(1998), Jansen (2003))... complexities in f (ε,m) +O(p(n)).

T’kindt Exponential Algorithms with applications to scheduling 68 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Approximation Algorithms

Generality

For NP-hard minimization problems, polynomial-time heuristic
algorithms H with a worst-case guarantee :

Fixed ratio : Z H

Z Opt ≤ ρ and polynomial time in input length,

PTAS : Z H

Z Opt ≤ (1 + ε) and polynomial time in input length
when ε is fixed,

FPTAS : Z H

Z Opt ≤ (1 + ε) and polynomial time both in input
length and 1

ε .

A large part of the scheduling literature...

Few works on approximation with moderately exponential
computation time (Sevastianov and Woeginger (1998), Hall
(1998), Jansen (2003))... complexities in f (ε,m) +O(p(n)).

T’kindt Exponential Algorithms with applications to scheduling 68 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Approximation Algorithms

Generality

For NP-hard minimization problems, polynomial-time heuristic
algorithms H with a worst-case guarantee :

Fixed ratio : Z H

Z Opt ≤ ρ and polynomial time in input length,

PTAS : Z H

Z Opt ≤ (1 + ε) and polynomial time in input length
when ε is fixed,

FPTAS : Z H

Z Opt ≤ (1 + ε) and polynomial time both in input
length and 1

ε .

A large part of the scheduling literature...

Few works on approximation with moderately exponential
computation time (Sevastianov and Woeginger (1998), Hall
(1998), Jansen (2003))... complexities in f (ε,m) +O(p(n)).

T’kindt Exponential Algorithms with applications to scheduling 68 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Exact Exponential-Time Algorithms

General objectives

For NP-hard problems, design exact algorithms with worst-case
running time guarantee.

Complexity O∗(cn), with c a constant as small as possible

In the remainder, we rely in the framework presented by
Paschos (2015) : find approximation algorithms with wc time
complexity in O∗(cn).

Paschos, V. (2015). When polynomial approximation meets exact computation. 4’OR,

13(3) :227-245

T’kindt Exponential Algorithms with applications to scheduling 69 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Exact Exponential-Time Algorithms

General objectives

For NP-hard problems, design exact algorithms with worst-case
running time guarantee.

Complexity O∗(cn), with c a constant as small as possible

In the remainder, we rely in the framework presented by
Paschos (2015) : find approximation algorithms with wc time
complexity in O∗(cn).

Paschos, V. (2015). When polynomial approximation meets exact computation. 4’OR,

13(3) :227-245

T’kindt Exponential Algorithms with applications to scheduling 69 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Initial results

Theorem 1

Let d̃i be a deadline associated with job i , so that in a feasible
schedule job i must complete before d̃i . The existence of a feasible
schedule for the P |d̃i |− problem can be decided in O∗(m n

2) time
and space.

This result is shown by reformulating the P |d̃i |− problem as a
(MCP),

We denote by Af the algorithm solving the P |d̃i |− problem.

Lente et al. ([4]) proposed an E-ETA for solving the
P |di |

∑
i Ui problem, which requires O∗((m + 1)

n
2) time and

space in the worst case.

[4] C. Lente, M. Liedloff, A. Soukhal and V. T’kindt. On an extension of the Sort & Search method with

application to scheduling theory, Theoretical Computer Science, vol 511, pp. 13-22, 2013.

T’kindt Exponential Algorithms with applications to scheduling 70 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Initial results

Theorem 1

Let d̃i be a deadline associated with job i , so that in a feasible
schedule job i must complete before d̃i . The existence of a feasible
schedule for the P |d̃i |− problem can be decided in O∗(m n

2) time
and space.

This result is shown by reformulating the P |d̃i |− problem as a
(MCP),

We denote by Af the algorithm solving the P |d̃i |− problem.

Lente et al. ([4]) proposed an E-ETA for solving the
P |di |

∑
i Ui problem, which requires O∗((m + 1)

n
2) time and

space in the worst case.

[4] C. Lente, M. Liedloff, A. Soukhal and V. T’kindt. On an extension of the Sort & Search method with

application to scheduling theory, Theoretical Computer Science, vol 511, pp. 13-22, 2013.

T’kindt Exponential Algorithms with applications to scheduling 70 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Initial results

Theorem 1

Let d̃i be a deadline associated with job i , so that in a feasible
schedule job i must complete before d̃i . The existence of a feasible
schedule for the P |d̃i |− problem can be decided in O∗(m n

2) time
and space.

This result is shown by reformulating the P |d̃i |− problem as a
(MCP),

We denote by Af the algorithm solving the P |d̃i |− problem.

Lente et al. ([4]) proposed an E-ETA for solving the
P |di |

∑
i Ui problem, which requires O∗((m + 1)

n
2) time and

space in the worst case.

[4] C. Lente, M. Liedloff, A. Soukhal and V. T’kindt. On an extension of the Sort & Search method with

application to scheduling theory, Theoretical Computer Science, vol 511, pp. 13-22, 2013.

T’kindt Exponential Algorithms with applications to scheduling 70 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Initial results

Theorem 1

Let d̃i be a deadline associated with job i , so that in a feasible
schedule job i must complete before d̃i . The existence of a feasible
schedule for the P |d̃i |− problem can be decided in O∗(m n

2) time
and space.

This result is shown by reformulating the P |d̃i |− problem as a
(MCP),

We denote by Af the algorithm solving the P |d̃i |− problem.

Lente et al. ([4]) proposed an E-ETA for solving the
P |di |

∑
i Ui problem, which requires O∗((m + 1)

n
2) time and

space in the worst case.

[4] C. Lente, M. Liedloff, A. Soukhal and V. T’kindt. On an extension of the Sort & Search method with

application to scheduling theory, Theoretical Computer Science, vol 511, pp. 13-22, 2013.

T’kindt Exponential Algorithms with applications to scheduling 70 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

A branching heuristic

We propose a first approximation algorithm, referred to as
Bapprox,

Let k ∈ N∗ be a given parameter,

Wlog, we assume d1 ≤ d2 ≤ ... ≤ dn ,

First, Af is run with d̃j = dj to check if a solution with∑
j U
∗
j = 0 exists,

If not, the n jobs are grouped into dnk e batches.
Each batch B` contains jobs {(`− 1) ∗ k + 1, ..., `k},
1 ≤ ` ≤ bnk c

T’kindt Exponential Algorithms with applications to scheduling 71 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

A branching heuristic

We propose a first approximation algorithm, referred to as
Bapprox,

Let k ∈ N∗ be a given parameter,

Wlog, we assume d1 ≤ d2 ≤ ... ≤ dn ,

First, Af is run with d̃j = dj to check if a solution with∑
j U
∗
j = 0 exists,

If not, the n jobs are grouped into dnk e batches.
Each batch B` contains jobs {(`− 1) ∗ k + 1, ..., `k},
1 ≤ ` ≤ bnk c

T’kindt Exponential Algorithms with applications to scheduling 71 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

A branching heuristic

We propose a first approximation algorithm, referred to as
Bapprox,

Let k ∈ N∗ be a given parameter,

Wlog, we assume d1 ≤ d2 ≤ ... ≤ dn ,

First, Af is run with d̃j = dj to check if a solution with∑
j U
∗
j = 0 exists,

If not, the n jobs are grouped into dnk e batches.
Each batch B` contains jobs {(`− 1) ∗ k + 1, ..., `k},
1 ≤ ` ≤ bnk c

T’kindt Exponential Algorithms with applications to scheduling 71 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

A branching heuristic

We propose a first approximation algorithm, referred to as
Bapprox,

Let k ∈ N∗ be a given parameter,

Wlog, we assume d1 ≤ d2 ≤ ... ≤ dn ,

First, Af is run with d̃j = dj to check if a solution with∑
j U
∗
j = 0 exists,

If not, the n jobs are grouped into dnk e batches.
Each batch B` contains jobs {(`− 1) ∗ k + 1, ..., `k},
1 ≤ ` ≤ bnk c

T’kindt Exponential Algorithms with applications to scheduling 71 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

A branching heuristic

We propose a first approximation algorithm, referred to as
Bapprox,

Let k ∈ N∗ be a given parameter,

Wlog, we assume d1 ≤ d2 ≤ ... ≤ dn ,

First, Af is run with d̃j = dj to check if a solution with∑
j U
∗
j = 0 exists,

If not, the n jobs are grouped into dnk e batches.
Each batch B` contains jobs {(`− 1) ∗ k + 1, ..., `k},
1 ≤ ` ≤ bnk c

T’kindt Exponential Algorithms with applications to scheduling 71 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Algorithm outline

Algorithm Bapprox builds a binary search tree by branching at
each level ` on batch B` and scheduling all its jobs either early
of tardy.

Each leaf node s defines a set of possible early jobs Es , the
remaining jobs being tardy.
Algorithm Af is run to check if there exists a feasible schedule
with jobs in Es all early.
⇒ ∀i ∈ Es , d̃i = di , and ∀i ∈ N \Es , d̃i = +∞

T’kindt Exponential Algorithms with applications to scheduling 72 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Algorithm outline

Algorithm Bapprox builds a binary search tree by branching at
each level ` on batch B` and scheduling all its jobs either early
of tardy.

Each leaf node s defines a set of possible early jobs Es , the
remaining jobs being tardy.
Algorithm Af is run to check if there exists a feasible schedule
with jobs in Es all early.
⇒ ∀i ∈ Es , d̃i = di , and ∀i ∈ N \Es , d̃i = +∞

T’kindt Exponential Algorithms with applications to scheduling 72 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Algorithm outline

Exercice.

Apply Bapprox on the following instance :
n = 4, m = 2, [pi]i = [5; 4; 3; 6], [di]i = [4; 8; 9; 10].
Find the optimal solution and provide the ratio on this example.

T’kindt Exponential Algorithms with applications to scheduling 73 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Algorithm outline

Branch and evaluate all leaf nodes,

The solution returned is s3 with {3; 4} early and {1; 2} tardy,
and

∑
i Ui(s3) = 2,

The optimal solution is s∗ with {2; 3; 4} early and {1} tardy,
and

∑
i Ui(s

∗) = 1,
Here, the ratio is 2

1 = ... ?
T’kindt Exponential Algorithms with applications to scheduling 74 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Algorithm outline

Branch and evaluate all leaf nodes,

The solution returned is s3 with {3; 4} early and {1; 2} tardy,
and

∑
i Ui(s3) = 2,

The optimal solution is s∗ with {2; 3; 4} early and {1} tardy,
and

∑
i Ui(s

∗) = 1,
Here, the ratio is 2

1 = ... ?
T’kindt Exponential Algorithms with applications to scheduling 74 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Algorithm outline

Branch and evaluate all leaf nodes,

The solution returned is s3 with {3; 4} early and {1; 2} tardy,
and

∑
i Ui(s3) = 2,

The optimal solution is s∗ with {2; 3; 4} early and {1} tardy,
and

∑
i Ui(s

∗) = 1,
Here, the ratio is 2

1 = ... ?
T’kindt Exponential Algorithms with applications to scheduling 74 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Algorithm outline

Branch and evaluate all leaf nodes,

The solution returned is s3 with {3; 4} early and {1; 2} tardy,
and

∑
i Ui(s3) = 2,

The optimal solution is s∗ with {2; 3; 4} early and {1} tardy,
and

∑
i Ui(s

∗) = 1,
Here, the ratio is 2

1 = ... ?
T’kindt Exponential Algorithms with applications to scheduling 74 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 2

Algorithm Bapprox admits a worst-case ratio ρ ≤ k (tight).

Algorithm Bapprox requires O∗((1 +m
k
2)

n
k) time and O∗(m n

2)
space.

Proof (sketch) : Ratio.

Assume α batches are scheduled tardy by Bapprox,
But what is the situation in an optimal schedule ?
If Bapprox is not optimal then some tardy jobs are early in the
optimal solution,
For each of these batches u, in the optimal solution, only
`u ≥ 1 jobs are tardy,
Then, ρ ≤ αk∑α

u=1 `u
,

The ratio is maximum when
∑α

u=1 `u = α ⇒ ρ ≤ k .

T’kindt Exponential Algorithms with applications to scheduling 75 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 2

Algorithm Bapprox admits a worst-case ratio ρ ≤ k (tight).

Algorithm Bapprox requires O∗((1 +m
k
2)

n
k) time and O∗(m n

2)
space.

Proof (sketch) : Ratio.

Assume α batches are scheduled tardy by Bapprox,
But what is the situation in an optimal schedule ?
If Bapprox is not optimal then some tardy jobs are early in the
optimal solution,
For each of these batches u, in the optimal solution, only
`u ≥ 1 jobs are tardy,
Then, ρ ≤ αk∑α

u=1 `u
,

The ratio is maximum when
∑α

u=1 `u = α ⇒ ρ ≤ k .

T’kindt Exponential Algorithms with applications to scheduling 75 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 2

Algorithm Bapprox admits a worst-case ratio ρ ≤ k (tight).

Algorithm Bapprox requires O∗((1 +m
k
2)

n
k) time and O∗(m n

2)
space.

Proof (sketch) : Ratio.

Assume α batches are scheduled tardy by Bapprox,
But what is the situation in an optimal schedule ?
If Bapprox is not optimal then some tardy jobs are early in the
optimal solution,
For each of these batches u, in the optimal solution, only
`u ≥ 1 jobs are tardy,
Then, ρ ≤ αk∑α

u=1 `u
,

The ratio is maximum when
∑α

u=1 `u = α ⇒ ρ ≤ k .

T’kindt Exponential Algorithms with applications to scheduling 75 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 2

Algorithm Bapprox admits a worst-case ratio ρ ≤ k (tight).

Algorithm Bapprox requires O∗((1 +m
k
2)

n
k) time and O∗(m n

2)
space.

Proof (sketch) : Ratio.

Assume α batches are scheduled tardy by Bapprox,
But what is the situation in an optimal schedule ?
If Bapprox is not optimal then some tardy jobs are early in the
optimal solution,
For each of these batches u, in the optimal solution, only
`u ≥ 1 jobs are tardy,
Then, ρ ≤ αk∑α

u=1 `u
,

The ratio is maximum when
∑α

u=1 `u = α ⇒ ρ ≤ k .

T’kindt Exponential Algorithms with applications to scheduling 75 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 2

Algorithm Bapprox admits a worst-case ratio ρ ≤ k (tight).

Algorithm Bapprox requires O∗((1 +m
k
2)

n
k) time and O∗(m n

2)
space.

Proof (sketch) : Ratio.

Assume α batches are scheduled tardy by Bapprox,
But what is the situation in an optimal schedule ?
If Bapprox is not optimal then some tardy jobs are early in the
optimal solution,
For each of these batches u, in the optimal solution, only
`u ≥ 1 jobs are tardy,
Then, ρ ≤ αk∑α

u=1 `u
,

The ratio is maximum when
∑α

u=1 `u = α ⇒ ρ ≤ k .

T’kindt Exponential Algorithms with applications to scheduling 75 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 2

Algorithm Bapprox admits a worst-case ratio ρ ≤ k (tight).

Algorithm Bapprox requires O∗((1 +m
k
2)

n
k) time and O∗(m n

2)
space.

Proof (sketch) : Ratio.

Assume α batches are scheduled tardy by Bapprox,
But what is the situation in an optimal schedule ?
If Bapprox is not optimal then some tardy jobs are early in the
optimal solution,
For each of these batches u, in the optimal solution, only
`u ≥ 1 jobs are tardy,
Then, ρ ≤ αk∑α

u=1 `u
,

The ratio is maximum when
∑α

u=1 `u = α ⇒ ρ ≤ k .

T’kindt Exponential Algorithms with applications to scheduling 75 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 2

Algorithm Bapprox admits a worst-case ratio ρ ≤ k (tight).

Algorithm Bapprox requires O∗((1 +m
k
2)

n
k) time and O∗(m n

2)
space.

Proof (sketch) : Ratio.

Assume α batches are scheduled tardy by Bapprox,
But what is the situation in an optimal schedule ?
If Bapprox is not optimal then some tardy jobs are early in the
optimal solution,
For each of these batches u, in the optimal solution, only
`u ≥ 1 jobs are tardy,
Then, ρ ≤ αk∑α

u=1 `u
,

The ratio is maximum when
∑α

u=1 `u = α ⇒ ρ ≤ k .

T’kindt Exponential Algorithms with applications to scheduling 75 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 2

Algorithm Bapprox admits a worst-case ratio ρ ≤ k (tight).

Algorithm Bapprox requires O∗((1 +m
k
2)

n
k) time and O∗(m n

2)
space.

Proof (sketch) : Ratio.

Assume α batches are scheduled tardy by Bapprox,
But what is the situation in an optimal schedule ?
If Bapprox is not optimal then some tardy jobs are early in the
optimal solution,
For each of these batches u, in the optimal solution, only
`u ≥ 1 jobs are tardy,
Then, ρ ≤ αk∑α

u=1 `u
,

The ratio is maximum when
∑α

u=1 `u = α ⇒ ρ ≤ k .

T’kindt Exponential Algorithms with applications to scheduling 75 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 2

Algorithm Bapprox admits a worst-case ratio ρ ≤ k (tight).

Algorithm Bapprox requires O∗((1 +m
k
2)

n
k) time and O∗(m n

2)
space.

Proof : worst-case time complexity.

Initial (feasibility) step requires O∗(m n
2) time.

Let LN be the list of all leaf nodes generated. A leaf node can
be represented by (E ;T) two sets of early and tardy jobs.

We have : |LN | =∑d nk e`=0

(d nk e
`

)
.

T’kindt Exponential Algorithms with applications to scheduling 76 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 2

Algorithm Bapprox admits a worst-case ratio ρ ≤ k (tight).

Algorithm Bapprox requires O∗((1 +m
k
2)

n
k) time and O∗(m n

2)
space.

Proof : worst-case time complexity.

Initial (feasibility) step requires O∗(m n
2) time.

Let LN be the list of all leaf nodes generated. A leaf node can
be represented by (E ;T) two sets of early and tardy jobs.

We have : |LN | =∑d nk e`=0

(d nk e
`

)
.

T’kindt Exponential Algorithms with applications to scheduling 76 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 2

Algorithm Bapprox admits a worst-case ratio ρ ≤ k (tight).

Algorithm Bapprox requires O∗((1 +m
k
2)

n
k) time and O∗(m n

2)
space.

Proof : worst-case time complexity.

Initial (feasibility) step requires O∗(m n
2) time.

Let LN be the list of all leaf nodes generated. A leaf node can
be represented by (E ;T) two sets of early and tardy jobs.

We have : |LN | =∑d nk e`=0

(d nk e
`

)
.

T’kindt Exponential Algorithms with applications to scheduling 76 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 2

Algorithm Bapprox admits a worst-case ratio ρ ≤ k (tight).

Algorithm Bapprox requires O∗((1 +m
k
2)

n
k) time and O∗(m n

2)
space.

Proof : worst-case time complexity.

Initial (feasibility) step requires O∗(m n
2) time.

Let LN be the list of all leaf nodes generated. A leaf node can
be represented by (E ;T) two sets of early and tardy jobs.

We have : |LN | =∑d nk e`=0

(d nk e
`

)
.

T’kindt Exponential Algorithms with applications to scheduling 76 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 2

Algorithm Bapprox admits a worst-case ratio ρ ≤ k .

Algorithm Bapprox requires O∗((1 +m
k
2)

n
k) time and O∗(m n

2)
space.

Proof : worst-case time complexity.

∀(E ;T) ∈ LN , deciding of the feasibility requires O∗(m |E|
2)

time, with |E | = k` and ` the number of early batches in E .
It follows that to build and test all leaf nodes the worst-case
running time is in :

O∗(∑d nk e`=0

(d nk e
`

)
(m

k
2)`)

⇔ O∗((1 +m
k
2)

n
k),

by making use of the Newton’s binomial formula.

T’kindt Exponential Algorithms with applications to scheduling 77 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 2

Algorithm Bapprox admits a worst-case ratio ρ ≤ k .

Algorithm Bapprox requires O∗((1 +m
k
2)

n
k) time and O∗(m n

2)
space.

Proof : worst-case time complexity.

∀(E ;T) ∈ LN , deciding of the feasibility requires O∗(m |E|
2)

time, with |E | = k` and ` the number of early batches in E .
It follows that to build and test all leaf nodes the worst-case
running time is in :

O∗(∑d nk e`=0

(d nk e
`

)
(m

k
2)`)

⇔ O∗((1 +m
k
2)

n
k),

by making use of the Newton’s binomial formula.

T’kindt Exponential Algorithms with applications to scheduling 77 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 2

Algorithm Bapprox admits a worst-case ratio ρ ≤ k .

Algorithm Bapprox requires O∗((1 +m
k
2)

n
k) time and O∗(m n

2)
space.

Illustration (ratios and complexities) in the case m = 2 :
k ρ time
1 1 O(2.4142n)
2 2 O(1.7320n)
3 3 O(1.5643n)
4 4 O(1.4953n)
5 5 O(1.4610n)

. . .
10 10 O(1.4186n)

Noteworthy, by comparison with the EETA running in
O(1.7320n) time, algorithm Bapprox is relevant for k ≥ 3.

T’kindt Exponential Algorithms with applications to scheduling 78 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branching and preprocessing

How to decrease the ratio ρ of algorithm Bapprox ?

We add a preprocessing step (algorithm PBapprox).

Let us introduce a parameter c ∈ N∗.
The preprocessing generates all possible subsets of at most
bnc c tardy jobs among n and then, for each, solve the
feasibility problem on the remaining jobs.

If at least one of these subsets lead to a feasible schedule,
then the optimal solution of the P |di |

∑
i Ui problem is

found. Otherwise, algorithm Bapprox is used (on each subset
of size (n − bnc c)).

T’kindt Exponential Algorithms with applications to scheduling 79 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branching and preprocessing

How to decrease the ratio ρ of algorithm Bapprox ?

We add a preprocessing step (algorithm PBapprox).

Let us introduce a parameter c ∈ N∗.
The preprocessing generates all possible subsets of at most
bnc c tardy jobs among n and then, for each, solve the
feasibility problem on the remaining jobs.

If at least one of these subsets lead to a feasible schedule,
then the optimal solution of the P |di |

∑
i Ui problem is

found. Otherwise, algorithm Bapprox is used (on each subset
of size (n − bnc c)).

T’kindt Exponential Algorithms with applications to scheduling 79 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branching and preprocessing

How to decrease the ratio ρ of algorithm Bapprox ?

We add a preprocessing step (algorithm PBapprox).

Let us introduce a parameter c ∈ N∗.
The preprocessing generates all possible subsets of at most
bnc c tardy jobs among n and then, for each, solve the
feasibility problem on the remaining jobs.

If at least one of these subsets lead to a feasible schedule,
then the optimal solution of the P |di |

∑
i Ui problem is

found. Otherwise, algorithm Bapprox is used (on each subset
of size (n − bnc c)).

T’kindt Exponential Algorithms with applications to scheduling 79 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branching and preprocessing

How to decrease the ratio ρ of algorithm Bapprox ?

We add a preprocessing step (algorithm PBapprox).

Let us introduce a parameter c ∈ N∗.
The preprocessing generates all possible subsets of at most
bnc c tardy jobs among n and then, for each, solve the
feasibility problem on the remaining jobs.

If at least one of these subsets lead to a feasible schedule,
then the optimal solution of the P |di |

∑
i Ui problem is

found. Otherwise, algorithm Bapprox is used (on each subset
of size (n − bnc c)).

T’kindt Exponential Algorithms with applications to scheduling 79 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branching and preprocessing

How to decrease the ratio ρ of algorithm Bapprox ?

We add a preprocessing step (algorithm PBapprox).

Let us introduce a parameter c ∈ N∗.
The preprocessing generates all possible subsets of at most
bnc c tardy jobs among n and then, for each, solve the
feasibility problem on the remaining jobs.

If at least one of these subsets lead to a feasible schedule,
then the optimal solution of the P |di |

∑
i Ui problem is

found. Otherwise, algorithm Bapprox is used (on each subset
of size (n − bnc c)).

T’kindt Exponential Algorithms with applications to scheduling 79 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 3

Algorithm PBapprox admits a worst-case ratio ρ ≤ k2+k(c−1)+1
k+c .

T’kindt Exponential Algorithms with applications to scheduling 80 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 4

Algorithm PBapprox requires

O∗
(
max

(
2H (c)nm

n(c−1)
2c ; (ce)

n
c (1 +m

k
2)

n(c−1)
ck

))
time,

H (c) = −c log2(c)− (1− c) log2(1− c) and e is Euler’s number.

The worst-case space requirement is in O∗(m n(c−1)
2c).

Proof : worst-case time complexity.

The preprocessing phase : generation of subsets of size at
most bnc c tardy jobs and solution of feasibility problems on
the early jobs. Worst-case running time :

O∗(∑b nc ci=0

(
n
i

)
m

n−i
2).

This is a partial sum of binomials !

T’kindt Exponential Algorithms with applications to scheduling 81 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 4

Algorithm PBapprox requires

O∗
(
max

(
2H (c)nm

n(c−1)
2c ; (ce)

n
c (1 +m

k
2)

n(c−1)
ck

))
time,

H (c) = −c log2(c)− (1− c) log2(1− c) and e is Euler’s number.

The worst-case space requirement is in O∗(m n(c−1)
2c).

Proof : worst-case time complexity.

The preprocessing phase : generation of subsets of size at
most bnc c tardy jobs and solution of feasibility problems on
the early jobs. Worst-case running time :

O∗(∑b nc ci=0

(
n
i

)
m

n−i
2).

This is a partial sum of binomials !

T’kindt Exponential Algorithms with applications to scheduling 81 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 4

Algorithm PBapprox requires

O∗
(
max

(
2H (c)nm

n(c−1)
2c ; (ce)

n
c (1 +m

k
2)

n(c−1)
ck

))
time,

H (c) = −c log2(c)− (1− c) log2(1− c) and e is Euler’s number.

The worst-case space requirement is in O∗(m n(c−1)
2c).

Proof : worst-case time complexity.

The preprocessing phase : generation of subsets of size at
most bnc c tardy jobs and solution of feasibility problems on
the early jobs. Worst-case running time :

O∗(∑b nc ci=0

(
n
i

)
m

n−i
2).

This is a partial sum of binomials !

T’kindt Exponential Algorithms with applications to scheduling 81 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 4

Algorithm PBapprox requires

O∗
(
max

(
2H (c)nm

n(c−1)
2c ; (ce)

n
c (1 +m

k
2)

n(c−1)
ck

))
time,

H (c) = −c log2(c)− (1− c) log2(1− c) and e is Euler’s number.

The worst-case space requirement is in O∗(m n(c−1)
2c).

Proof : worst-case time complexity.

No close formula, use of an upper bound :∑`
i=0

(
n
i

)
≤ 2H (`

n
)n ,

with H (`n) = − `
n log2(

`
n)− (1− `

n) log2(1− `
n), 0 <

`
n < 1,

the binary entropy of `
n .

T’kindt Exponential Algorithms with applications to scheduling 82 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 4

Algorithm PBapprox requires

O∗
(
max

(
2H (c)nm

n(c−1)
2c ; (ce)

n
c (1 +m

k
2)

n(c−1)
ck

))
time,

H (c) = −c log2(c)− (1− c) log2(1− c) and e is Euler’s number.

The worst-case space requirement is in O∗(m n(c−1)
2c).

Proof : worst-case time complexity.

We obtain the following reformulation :∑b n
c
c

i=0

(
n
i

)
m

n−i
2 ≤∑b nc ci=0

(
n
i

)
×m

n(c−1)
2c

≤ 2H (c)nm
n(c−1)

2c .

The preprocessing phase has a worst-case time complexity in

O∗(2H (c)nm
n(c−1)

2c).

T’kindt Exponential Algorithms with applications to scheduling 83 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 4

Algorithm PBapprox requires

O∗
(
max

(
2H (c)nm

n(c−1)
2c ; (ce)

n
c (1 +m

k
2)

n(c−1)
ck

))
time,

H (c) = −c log2(c)− (1− c) log2(1− c) and e is Euler’s number.

The worst-case space requirement is in O∗(m n(c−1)
2c).

Proof : worst-case time complexity.

We obtain the following reformulation :∑b n
c
c

i=0

(
n
i

)
m

n−i
2 ≤∑b nc ci=0

(
n
i

)
×m

n(c−1)
2c

≤ 2H (c)nm
n(c−1)

2c .

The preprocessing phase has a worst-case time complexity in

O∗(2H (c)nm
n(c−1)

2c).

T’kindt Exponential Algorithms with applications to scheduling 83 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 4

Algorithm PBapprox requires

O∗
(
max

(
2H (c)nm

n(c−1)
2c ; (ce)

n
c (1 +m

k
2)

n(c−1)
ck

))
time,

H (c) = −c log2(c)− (1− c) log2(1− c) and e is Euler’s number.

The worst-case space requirement is in O∗(m n(c−1)
2c).

Proof : worst-case time complexity.

The branching phase : algorithm Bapprox requires

O∗((1 +m
k
2)

n−b nc c
k) time.

The branching phase has a worst-case running time in :

O∗(
(

n
b n
c
c
)
(1 +m

k
2)

n−b nc c
k).

T’kindt Exponential Algorithms with applications to scheduling 84 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 4

Algorithm PBapprox requires

O∗
(
max

(
2H (c)nm

n(c−1)
2c ; (ce)

n
c (1 +m

k
2)

n(c−1)
ck

))
time,

H (c) = −c log2(c)− (1− c) log2(1− c) and e is Euler’s number.

The worst-case space requirement is in O∗(m n(c−1)
2c).

Proof : worst-case time complexity.

The branching phase : algorithm Bapprox requires

O∗((1 +m
k
2)

n−b nc c
k) time.

The branching phase has a worst-case running time in :

O∗(
(

n
b n
c
c
)
(1 +m

k
2)

n−b nc c
k).

T’kindt Exponential Algorithms with applications to scheduling 84 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 4

Algorithm PBapprox requires

O∗
(
max

(
2H (c)nm

n(c−1)
2c ; (ce)

n
c (1 +m

k
2)

n(c−1)
ck

))
time,

H (c) = −c log2(c)− (1− c) log2(1− c) and e is Euler’s number.

The worst-case space requirement is in O∗(m n(c−1)
2c).

Proof : worst-case time complexity.

The branching phase : algorithm Bapprox requires

O∗((1 +m
k
2)

n−b nc c
k) time.

The branching phase has a worst-case running time in :

O∗(
(

n
b n
c
c
)
(1 +m

k
2)

n−b nc c
k).

T’kindt Exponential Algorithms with applications to scheduling 84 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 4

Algorithm PBapprox requires

O∗
(
max

(
2H (c)nm

n(c−1)
2c ; (ce)

n
c (1 +m

k
2)

n(c−1)
ck

))
time,

H (c) = −c log2(c)− (1− c) log2(1− c) and e is Euler’s number.

The worst-case space requirement is in O∗(m n(c−1)
2c).

Proof : worst-case time complexity.

By noting that
(
N
K

)
< NK eK

KK with e being Euler’s number, we
obtain :(

n
b n
c
c
)
(1 +m

k
2)

n−b nc c
k < (ne

b n
c
c)
b n
c
c(1 +m

k
2)

n(c−1)
ck

< (ce)
n
c (1 +m

k
2)

n(c−1)
ck .

Finally, we have the worst-case time complexity stated in the
theorem.

T’kindt Exponential Algorithms with applications to scheduling 85 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 4

Algorithm PBapprox requires

O∗
(
max

(
2H (c)nm

n(c−1)
2c ; (ce)

n
c (1 +m

k
2)

n(c−1)
ck

))
time,

H (c) = −c log2(c)− (1− c) log2(1− c) and e is Euler’s number.

The worst-case space requirement is in O∗(m n(c−1)
2c).

Proof : worst-case time complexity.

By noting that
(
N
K

)
< NK eK

KK with e being Euler’s number, we
obtain :(

n
b n
c
c
)
(1 +m

k
2)

n−b nc c
k < (ne

b n
c
c)
b n
c
c(1 +m

k
2)

n(c−1)
ck

< (ce)
n
c (1 +m

k
2)

n(c−1)
ck .

Finally, we have the worst-case time complexity stated in the
theorem.

T’kindt Exponential Algorithms with applications to scheduling 85 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 4

Algorithm PBapprox requires

O∗
(
max

(
2H (c)nm

n(c−1)
2c ; (ce)

n
c (1 +m

k
2)

n(c−1)
ck

))
time,

H (c) = −c log2(c)− (1− c) log2(1− c) and e is Euler’s number.

The worst-case space requirement is in O∗(m n(c−1)
2c).

Proof : worst-case time complexity.

By noting that
(
N
K

)
< NK eK

KK with e being Euler’s number, we
obtain :(

n
b n
c
c
)
(1 +m

k
2)

n−b nc c
k < (ne

b n
c
c)
b n
c
c(1 +m

k
2)

n(c−1)
ck

< (ce)
n
c (1 +m

k
2)

n(c−1)
ck .

Finally, we have the worst-case time complexity stated in the
theorem.

T’kindt Exponential Algorithms with applications to scheduling 85 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Illustration (ratios and complexities) in the case m = 2 :
k ρ time
1 1 O(2.4142n)
2 2 O(1.7320n)
3 3 O(1.5643n)
4 4 O(1.4953n)
5 5 O(1.4610n)

. . .
10 10 O(1.4186n)

⇒

k c ρ time
3 1000 2.99 O(1.5760n)

100 2.98 O(1.6471n)
10 2.84 O(2.0813n)

4 1000 3.99 O(1.5066n)
100 3.97 O(1.5752n)
10 3.78 O(1.9984n)

. . .

T’kindt Exponential Algorithms with applications to scheduling 86 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Generalizations

Weighted case : P |di |
∑

i wiUi ,

Algorithm Bapprox can be generalized by changing the
branching scheme (and making the wct analysis more
complicated),

Ratio : ρ = k ,

Worst-case time complexity : O∗(γn) time and O∗(m n
2)

space, with γ = m
1
2δ and γ−k + γ−1+δ = 1.

T’kindt Exponential Algorithms with applications to scheduling 87 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Generalizations

Weighted case : P |di |
∑

i wiUi ,

Algorithm Bapprox can be generalized by changing the
branching scheme (and making the wct analysis more
complicated),

Ratio : ρ = k ,

Worst-case time complexity : O∗(γn) time and O∗(m n
2)

space, with γ = m
1
2δ and γ−k + γ−1+δ = 1.

T’kindt Exponential Algorithms with applications to scheduling 87 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Generalizations

Weighted case : P |di |
∑

i wiUi ,

Algorithm Bapprox can be generalized by changing the
branching scheme (and making the wct analysis more
complicated),

Ratio : ρ = k ,

Worst-case time complexity : O∗(γn) time and O∗(m n
2)

space, with γ = m
1
2δ and γ−k + γ−1+δ = 1.

T’kindt Exponential Algorithms with applications to scheduling 87 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Generalizations

Weighted case : P |di |
∑

i wiUi ,

Algorithm Bapprox can be generalized by changing the
branching scheme (and making the wct analysis more
complicated),

Ratio : ρ = k ,

Worst-case time complexity : O∗(γn) time and O∗(m n
2)

space, with γ = m
1
2δ and γ−k + γ−1+δ = 1.

T’kindt Exponential Algorithms with applications to scheduling 87 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

1 Introduction

2 Exact Exponential-Time Algorithms

3 Heuristic Exponential-Time Algorithms

4 Conclusions

T’kindt Exponential Algorithms with applications to scheduling 88 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Conclusions

The P |di |
∑

i Ui problem can be approximated by moderately
exponential-time algorithms,

Algorithm Bapprox : a branching-based heuristic,

Algorithme PBapprox : improvement by adding a
preprocessing phase,

Need for improving the analysis of the worst-case time
complexity of PBapprox,

Can we handle a reduction of ratio ρ = k directly in the
branching scheme ?

Can we generalize this approach to other scheduling problems
with number of tardy jobs ?

T’kindt Exponential Algorithms with applications to scheduling 89 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Conclusions

The P |di |
∑

i Ui problem can be approximated by moderately
exponential-time algorithms,

Algorithm Bapprox : a branching-based heuristic,

Algorithme PBapprox : improvement by adding a
preprocessing phase,

Need for improving the analysis of the worst-case time
complexity of PBapprox,

Can we handle a reduction of ratio ρ = k directly in the
branching scheme ?

Can we generalize this approach to other scheduling problems
with number of tardy jobs ?

T’kindt Exponential Algorithms with applications to scheduling 89 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Conclusions

The P |di |
∑

i Ui problem can be approximated by moderately
exponential-time algorithms,

Algorithm Bapprox : a branching-based heuristic,

Algorithme PBapprox : improvement by adding a
preprocessing phase,

Need for improving the analysis of the worst-case time
complexity of PBapprox,

Can we handle a reduction of ratio ρ = k directly in the
branching scheme ?

Can we generalize this approach to other scheduling problems
with number of tardy jobs ?

T’kindt Exponential Algorithms with applications to scheduling 89 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Conclusions

The P |di |
∑

i Ui problem can be approximated by moderately
exponential-time algorithms,

Algorithm Bapprox : a branching-based heuristic,

Algorithme PBapprox : improvement by adding a
preprocessing phase,

Need for improving the analysis of the worst-case time
complexity of PBapprox,

Can we handle a reduction of ratio ρ = k directly in the
branching scheme ?

Can we generalize this approach to other scheduling problems
with number of tardy jobs ?

T’kindt Exponential Algorithms with applications to scheduling 89 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Conclusions

The P |di |
∑

i Ui problem can be approximated by moderately
exponential-time algorithms,

Algorithm Bapprox : a branching-based heuristic,

Algorithme PBapprox : improvement by adding a
preprocessing phase,

Need for improving the analysis of the worst-case time
complexity of PBapprox,

Can we handle a reduction of ratio ρ = k directly in the
branching scheme ?

Can we generalize this approach to other scheduling problems
with number of tardy jobs ?

T’kindt Exponential Algorithms with applications to scheduling 89 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Conclusions

The P |di |
∑

i Ui problem can be approximated by moderately
exponential-time algorithms,

Algorithm Bapprox : a branching-based heuristic,

Algorithme PBapprox : improvement by adding a
preprocessing phase,

Need for improving the analysis of the worst-case time
complexity of PBapprox,

Can we handle a reduction of ratio ρ = k directly in the
branching scheme ?

Can we generalize this approach to other scheduling problems
with number of tardy jobs ?

T’kindt Exponential Algorithms with applications to scheduling 89 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Conclusions

Exponential Time Algorithms provide us with worst-case
information,

Ok, finding ETA with reduced worst-case complexities is a
challenging (theoretical) issue,

Apparently, there is also a room for strong computational
impacts,

The idea : take advantage of decomposition approaches of
ETA, embed problem-dependent knowledge,

You may get efficient exact algorithms...

... even more with polynomial space ETA !

T’kindt Exponential Algorithms with applications to scheduling 90 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Conclusions

Exponential Time Algorithms provide us with worst-case
information,

Ok, finding ETA with reduced worst-case complexities is a
challenging (theoretical) issue,

Apparently, there is also a room for strong computational
impacts,

The idea : take advantage of decomposition approaches of
ETA, embed problem-dependent knowledge,

You may get efficient exact algorithms...

... even more with polynomial space ETA !

T’kindt Exponential Algorithms with applications to scheduling 90 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Conclusions

Exponential Time Algorithms provide us with worst-case
information,

Ok, finding ETA with reduced worst-case complexities is a
challenging (theoretical) issue,

Apparently, there is also a room for strong computational
impacts,

The idea : take advantage of decomposition approaches of
ETA, embed problem-dependent knowledge,

You may get efficient exact algorithms...

... even more with polynomial space ETA !

T’kindt Exponential Algorithms with applications to scheduling 90 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Conclusions

Exponential Time Algorithms provide us with worst-case
information,

Ok, finding ETA with reduced worst-case complexities is a
challenging (theoretical) issue,

Apparently, there is also a room for strong computational
impacts,

The idea : take advantage of decomposition approaches of
ETA, embed problem-dependent knowledge,

You may get efficient exact algorithms...

... even more with polynomial space ETA !

T’kindt Exponential Algorithms with applications to scheduling 90 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Conclusions

Exponential Time Algorithms provide us with worst-case
information,

Ok, finding ETA with reduced worst-case complexities is a
challenging (theoretical) issue,

Apparently, there is also a room for strong computational
impacts,

The idea : take advantage of decomposition approaches of
ETA, embed problem-dependent knowledge,

You may get efficient exact algorithms...

... even more with polynomial space ETA !

T’kindt Exponential Algorithms with applications to scheduling 90 / 90

Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Conclusions

Exponential Time Algorithms provide us with worst-case
information,

Ok, finding ETA with reduced worst-case complexities is a
challenging (theoretical) issue,

Apparently, there is also a room for strong computational
impacts,

The idea : take advantage of decomposition approaches of
ETA, embed problem-dependent knowledge,

You may get efficient exact algorithms...

... even more with polynomial space ETA !

T’kindt Exponential Algorithms with applications to scheduling 90 / 90

	Introduction
	Exact Exponential-Time Algorithms
	Technique 1: Dynamic Programming
	Technique 2: Branch-and-Reduce
	Technique 3: Sort&Search

	Heuristic Exponential-Time Algorithms
	Conclusions

