
SCHEDULING

From Theory to Practice

Günter Schmidt
Saarland University

guenter.schmidt@mpi-inf.mpg.de

http://people.mpi-inf.mpg.de/~gschmidt/

Metz, June 26, 2019

Machine/Shift 0 1 2 3 4

Machine 1 J_11 A S J_21

Machine 2 J_12 S J_11

-3000, 1916, 1956

What are we doing in theory ?

Epoche 1 Combinatorial Analysis

Flow shop with Johnson (1954);
single machine with Jackson (1955) (EDD/Lmax) and Smith (1956)
(SPT/SUM Cj);
parallel machines with McNaughton (1959);
open shop twenty years later

J1 J2 J3 J4 J5 F2||Cmax = 21 J1, J5, J2, J3, J4

1 2 3 4 5 1||Lmax = 9 J5, J4, J3, J2, J1
6 5 4 3 2 1||SumCj = 15 J1, J2, J3, J4, J5

P2|pmtn|Cmax = 17,5

02||Cmax = 21

Epoche 2 Restricting Search with Enumerative Algorithms (60th)

Branch & Bound and Dynamic Programming for practical problems with
small instances applied to Single Machine, Flow Shop, Job Shop, ...

Branch & Bound
(a) a branching rule that indicates how solutions are partitioned into
subsets;
(b) a lower bounding rule that computes a lower bound on the cost of
any solution within the subset of solutions under consideration;
(c) optional features such as an upper bounding rule that constructs
feasible solutions that can be evaluated to produce an upper bound, and
dominance rules that can eliminate some subsets of solutions from
further consideration.

There exist numerous results

Epoche 2 Restricting Search with Enumerative Algorithms

Branch & Bound and Dynamic Programming for practical problems with
small instances applied to Single Machine, Flow Shop, Job Shop, ...

Branch & Bound
(a) a branching rule that indicates how solutions are partitioned into
subsets;
(b) a lower bounding rule that computes a lower bound on the cost of
any solution within the subset of solutions under consideration;
(c) optional features such as an upper bounding rule that constructs
feasible solutions that can be evaluated to produce an upper bound, and
dominance rules that can eliminate some subsets of solutions from
further consideration.

There exist numerous results

Epoche 3 Complexity and Classification: P vs NP

Edmonds (1965) argues that a “good” algorithm is one whose running
time depends polynomially on the length of the input (or size) of the
problem.

Since a computer uses the binary representation of the numbers, the
length L of the input is essentially bounded by the product of the
number of inputs: e.g. the length of input for Rm||SUM wjCj is bounded
by L = nmlog(max{pij}) + nlog(max{wj}).

An algorithm that requires O(Lk) time, where k is a constant that does
not depend on L, is called a polynomial-time (or simply a polynomial)
algorithm. Those algorithms that require polynomial time under the
unary encoding are called pseudopolynomial; they are of some interest
too, but less practical than polynomial algorithms and their behaviour
strongly depends on the size of input parameters.

Epoche 3 Complexity and Classification: case of preemption

Mostly it is assumed that preemption, could simplify the problem but
this is not always true.

R||SUM Cj is polynomially solvable.
R2|pmtn|SUM Cj is NP-hard in the strong sense; see Sitters (2005).

The interest in this result is that, unlike for essentially all other
scheduling problems, the preemptive version appears to be harder than
its polynomially solvable non-preemptive counterpart.

The same is true for bi-directional conversion, a problem which is
related to scheduling (Danoura and Sakurai (1996), Schmidt (2017)).

Epoche 4 Approximate Solutions

Approximation versus heuristic algorithms: for a scheduling problem
with the goal of minimizing a function F(S) over all feasible schedules S,
let SO denote an optimal schedule.

A polynomial-time algorithm that finds a feasible solution SF such that
F(SF) is at most ρ (where ρ ≥ 1) times the optimal value F(SO) is called a
ρ-approximation algorithm; the value of ρ is called a worst-case ratio
bound.

If a problem admits a ρ-approximation algorithm, then it is said to be
approximable within a factor ρ. A family of ρ-approximation algorithms
is called a polynomial-time approximation scheme (PTAS) if ρ = 1+ ε for
any fixed ε > 0; if additionally the running time is polynomial with
respect to both the length of the problem input and 1/ε, then the
scheme is called a fully polynomial-time approximation scheme (FPTAS).

Epoche 4 Approximate Solutions: Parallel Machines

Graham (1969) shows that the LPT rule solves P||Cmax with ρ = 4/3 –
1/3m.

Braun und Schmidt (2003) compare for P|pmtn|Cmax the makespan of
preemptive and i-preemptive schedules, 0 < i < m-1. They show that
Cmax(i) < (2-2/(m/(i+1)+1))Cmax.

Assume Cmax = SUM pj/m for m=2 and i=1 then
Cmax(1) < 2 – 4/(m+2) = Cmax, i.e. ρ = 1.
It is known that for m=2 an optimal schedule with at most one
preemption exists.

Epoche 4 Approximate Solutions: Flow Shop

Model the original problem by an artificial F2 shop, and convert the
solution to the original problem.
No algorithm of this type is known to deliver a ratio better than /m/2\
(see Gonzalez and Sahni (1978), Röck and Schmidt (1983)).
Note that for m = 3 and /m/2\ = 2 it is easy to design a 2-
approximation algorithm:
Schedule the first two machines optimally by Johnson’s algorithm and
concatenate the resulting schedule with a block of operations on the
third machine.
For m = 3, an improved (5/3)-approximation algorithm is due to Chen et
al. (1996).
The best possible approximation result for Fm||Cmax is a PTAS
developed by Hall (1998).
It remains unknown whether the problem with a variable number of
machines is approximable within a constant factor ρ that does not
depend on m.

Epoche 4 Approximate Solutions : Open Shop

The ideas from flow shops can also be applied to open shops.

Sevastianov and Woeginger (1998) show the existence of a polynomial
time approximation scheme for Om||Cmax.

For the variant of the problem where the number of machines is part of
the input, it is known that the existence of an approximation scheme
would imply P = NP. Hence, the result draws a precise separating line
between approximable cases (i.e., with m fixed) and non-approximable
cases (i.e., with m part of the input) of this shop problem.

Epoche 4 Approximate Solutions: Local Search

Simulated Annealing, Tabu Search, Genetic Algorithms,
An important development in job shop scheduling with a wide
applicability, is the shifting bottleneck procedure proposed by Adams,
Balas and Zawack (1988).

It is a decomposition approach for problems with multiple machines.
The shifting bottleneck procedure for job shop scheduling works with
the disjunction graph representation coupled with a single machine
problem with release and delivery times is solved (typically using the
algorithm of Carlier (1982)). The bottleneck machine is the next
machine to be selected and is defined as the one having the largest
objective function value among the solutions of the single machine
problems.

Among the local search algorithms discussed above, the tabu search
algorithm of Nowicki and Smutnicki (1996a) and the guided local search
algorithm employing the shifting bottleneck procedure of Balas and
Vazacopoulos (1998) are the most effective.

Epoche 5 Enhanced Scheduling Models: non-availability scheduling
Starting Schmidt (1984), numerous new results, many survey papers,
e.g. Ma et al. (2010), Schmidt (2000), Sanlaville and Schmidt (1998)

Parallel machines:
For P2 with one non-availability after time t a FPTAS exist, see Kacem,
Sahnoune and Schmidt (2016)

Flow shop:
Blazewicz et al. (2002) investigate F2|NC|Cmax and analyze
constructive and local search based heuristic algorithms. Computational
results show that the algorithms perform well.

Braun et al. (2002) investigate F2|NC|Cmax and prove sufficient
conditions for the optimality of Johnson's permutation in the case of
given w > 1 non-availability intervals. They apply stability analysis, which
answers the question of how robust an optimal schedule is if there are
independent changes in the processing times of the jobs.

Epoche 5 Enhanced Scheduling Models: non-availability scheduling

Open shop:
Breit et al. (2001) and (2003) investigate O2|NC, non-pmtn|Cmax, show
that the problem is NP-hard and present an approximation algorithm
with a worst-case ratio of 4/3 for the problem with a single non-
availability interval.

Kubzin et al. (2005) give for O2|NC, resume|Cmax two PTAS, one of
which for the problem with one non‐availability interval on each machine
and the other for the problem with several non‐availability intervals on
one of the machines.
Problems with a more general structure of the non‐availability intervals
are not approximable in polynomial time within a constant factor, unless
P=NP-

Epoche 5 Enhanced Scheduling Models: non-availability scheduling

Breakdowns:
Albers and Schmidt (2001) investigate the online version of P|NC,
pmtn|Cmax. Machines can be added, break down and recover at
arbitrary points of time not known in advance. Results are that no online
algorithm (1) can construct optimal schedules, (2) can achieve a
bounded competitive ratio if there may be time intervals where no
machine is available and (3) an online algorithm constructs schedules
with an optimal makespan if a lookahead of one is given, i.e., the next
point in time when the set of available machines changes is known.

Kacem and Kellerer (2016) investigate the online version of 1|NC, {dj,rj}
|{Cmax, Lmax} and propose approximation algorithms for Cmax with or
without release dates. They show that the competitive ratio in both
cases is 3/2 and that this bound is best possible for Cmax. For Lmax
they propose a ≈ 1.70-approximation algorithm to solve the problem
with delivery times but without release dates. This ratio is tight for the
proposed algorithm and allows to establish a precise window for the
best possible ratio, which is ≈[1.50, 1.70].

Epoche 5 Enhanced Scheduling Models: lotsize scheduling:

Pattloch, Schmidt and Kovalyov (2001) investigate a problem which
appears in many industries. The question is how tasks of n > 2 different
job types can be scheduled on machines in lots such that the number of
changeovers is minimized. These changeovers occur if two tasks of
different types are scheduled in sequence on a machine. Heuristics for
the single and parallel machine case are presented.

The same authors (2002) investigate the problem of scheduling unit
time tasks of n = 2 job types on m parallel identical machines. For each
job type, given numbers of tasks are required to be completed by K
specified deadlines. The in-process inventory capacities are given. The
objective is to minimize the number of changeovers occurring between
the tasks of different types.
Earlier Pattloch and Schmidt [Discrete Appl. Math. 65 (1996) 409–419]
give an O(mH) algorithm to solve this problem where H is the latest
deadline. Here a modification of this algorithm with O(K.min{K,m}) time
complexity is given.

Epoche 5 Enhanced Scheduling Models: imprecise data

Kacem and Kellerer (2018) consider the problem of scheduling
independent jobs with a common due date on a single machine with the
objective of maximizing the number of early jobs.The processing times
are uncertain and take any value from a certain job dependent interval.
For measuring the quality of an algorithm for that problem with
imprecise data they use the concept of minimizing the maximum regret.
They present complexity results and dominance properties.

Schmidt (2017) invetigates a similar problem in the area of financial
scheduling. In an online conversion problem a player is converting one
asset into another based on a finite sequence of unknown future
conversion rates taking any value from an interval [m, M] of upper and
lower bounds. When a new rate is announced the player must decide
when to convert all current wealth. Conversion is over when the last
rate has appeared. The objective is to maximize terminal wealth after
conversion.

(1) Practice R|in-tree|SUM Cj

https://www.youtube.com/watch?v
=5es8zggYM7A

(1) R|in-tree|SUM Cj

P2|chains|SUM Cj is NP-hard in the strong sense,

R||SUM Cj can be solved in O(n3) time according to Bruno et al. (1974)
as shown in Blazewicz et al. (2001 p170).

Heuristic Algorithm for R|in-tree|SUM Cj

For t = 0, …, T determine the set of tasks without predecessors St
If some machine i becomes available at time t
(1) schedule St with a variant of Bruno et al. (1974) considering idle
time
(2.1) choose job j from St with minimum remaining processing time
(2.2) should j start on i at t (upper bound for Cj) or wait for i' until t'
(lower bound for Cj)

Choose the schedule with minimum SUM Cj

(2) Practice: R||MIN SetUp

(2) R||MIN SetUp

R|sequence/machine dependent setup times/costs,
deadlines|MIN #SetUps can be formulated with
MathProgramming;

The problem is NP-hard in the strong sense; a related
problem is investigated in Pattloch, Schmidt and Kovalyov
(2001) and solved by a heuristic
(1) solve the problem using the heuristic of Pattloch,
Schmidt and Kovalyov (2001)
(2) solve R|deadlines| without setups; for setups solve
the one machine problems

CONCLUSIONS

Scheduling

from theory to practice

and

from usage to discovery

!

