On the Travelling Salesperson Problem with
Neighborhoods

Antonios Antoniadis

June 28, 2019
JPOC11



Travelling Salesperson Problem (TSP)

Input: A set of n points.



Travelling Salesperson Problem (TSP)

Input: A set of n points.
Output: A tour of minimum total length that visits all the points.



TSP with Neihgborhoods (TSPN)

Input: A set of n regions.




TSP with Neihgborhoods (TSPN)

Input: A set of n regions.

Output: A tour of minimum total length that visits all the regions.



Computational Complexity: TSP .vs. TSPN

TSP TSPN
: NP-hard NP-hard
exact solution P’ao‘%adimitlraic_)lyA'sﬁ 5 Papadimi(‘jcriou g%'AS
C mits oes not admit
approximation Arora/Mitchell '96 | Gudmunsson & Levcopoulos '00

Definition
A polynomial-time algorithm ALG is called an «-approximation
algorithm if cost(ALG,/)< a-cost(OPT,/) for all instances /

Definition
A PTAS is a family of algorithms {ALG}.~o such that for each
€ >0, ALG, is a (1 + €)-approximation algorithm.



Versions of TSPN

regions lower bound upper bound
k points (Group TSP) no const. apx.
ind=2 Safra & Schwarz '03
k:2,d22 noPTAS

polygons in d =2

Dror & Qrlin '03
no PTAS
de Berg et al. '02

conv. polytopes

NP-hard

Open Problem:

fixed d Papadimitriou '77 NP-hard? PTAS?
hyperplanes Open Problem: PTAS

fixed d NP-hard? AA eé E;:l) '19
lines d = 2 ) John;son, '02
lines d — 3 NP-hard log™ n-apx.

Papadimitriou '77

Dumitrescu& Téth '13




Versions of TSPN

regions lower bound upper bound
k points (Group TSP) no const. apx.
ind=2 Safra & Schwarz '03
k:2,d22 noPTAS

polygons in d =2

Dror & Qrlin '03
no PTAS
de Berg et al. '02

conv. polytopes

NP-hard

Open Problem:

fixed d Papadimitriou '77 NP-hard? PTAS?
hyperplanes Open Problem: PTAS

fixed d NP-hard? AA eé :'aEI) '19
lines d =2 ) Johnfson, '02
lines d — 3 NP-hard log™ n-apx.

Papadimitriou '77

Dumitrescu& Téth '13




Hyperplane Neighborhoods, a Warmup

Dumitrescu and Té6th, SODA '13: a 22(9)_approximation




Hyperplane Neighborhoods, a Warmup

Dumitrescu and Té6th, SODA '13: a 22(9)_approximation
Linear Program:

\k 1y min(x2 — x1) + (y2 — 1)
] s.it. x1 < Xx
— ] yisy
in

X1 X2



Hyperplane Neighborhoods, a Warmup

Dumitrescu and Té6th, SODA '13: a 22(9)_approximation

‘; Linear Program:
\;\ 1y min(x2 — x1) + (y2 — 1)
] s.it. x1 < Xx
— ] yisy
. N

X1 X2



Hyperplane Neighborhoods, a Warmup

Dumitrescu and Té6th, SODA '13: a 22(9)_approximation

‘; Linear Program:
\;\ 5 .
1y, min(xo — x1) + (y2 — y1)
s.it. x1 < Xx
— yisy
g N
5‘ / |




Hyperplane Neighborhoods, a Warmup
Dumitrescu and Téth, SODA ’13: a 2°(9)_approximation

2 Linear Program:
\k s :
1y, min(x2 — x1) + (y2 — y1)
st. x1 <x
— i<y
O N1
s | )
X1 X2



Hyperplane Neighborhoods, a Warmup
Dumitrescu and Téth, SODA ’13: a 2°(9)_approximation

2 Linear Program:
NN -
1y, min(x2 — x1) + (y2 — y1)
st. x1 <x
— i<y
O N1
s | A
X1 X2
+
“®
Pi



Hyperplane Neighborhoods, a Warmup
Dumitrescu and Téth, SODA ’13: a 2°(9)_approximation

2 Linear Program:
% -
1y, min(x2 — x1) + (y2 — y1)
st. x1 <x
— i<y
O N1
s | A
X1 X2
+
L e
nj
p,



Hyperplane Neighborhoods, a Warmup
Dumitrescu and Téth, SODA ’13: a 2°(9)_approximation

2 Linear Program:
% -
1y, min(x2 — x1) + (y2 — y1)
st. x1 <x
— i<y
O N1
s | )
X1 X2
s
n
p,



Hyperplane Neighborhoods, a Warmup
Dumitrescu and Téth, SODA ’13: a 2°(9)_approximation

2 Linear Program:
NN -
1y, min(x2 — x1) + (y2 — y1)
st. x1 <x
— Y1ﬁ< Y2
Jr
. A W1 <si pl7ni> ZO
st / N - -
j ! (s —pi,m) <0
X1 X2
st
n
p,



Hyperplane Neighborhoods, a Warmup
Dumitrescu and Téth, SODA '13: a 2°(9)_approximation
Analysis Linear Program:
min(x2 — x1) + (y2 — y1)
st. x1 <x



Hyperplane Neighborhoods, a Warmup

Dumitrescu and Téth, SODA '13: a 2°(9)_approximation

Analysis Linear Program:

min(x2 — x1) + (y2 — y1)
st. x1 < x

ALG <y




Hyperplane Neighborhoods, a Warmup
Dumitrescu and Téth, SODA '13: a 2°(9)_approximation

Analysis Linear Program:
bt s

min(x2 — x1) + (y2 — y1)
st. x1 <x




Hyperplane Neighborhoods, a Warmup
Dumitrescu and Téth, SODA '13: a 2°(9)_approximation

Analysis Linear Program:
. min(x2 — x1) + (y2 — y1)
~“s~ st. x1 <x



Hyperplane Neighborhoods, a Warmup
Dumitrescu and Téth, SODA ’13: a 2°(9)_approximation

Analysis Linear Program:
min(x2 — x1) + (y2 — 1)
~“s~ st. x1 < x

cost(ALG) < pe.rim(box) c 20(d) ;
cost(OPT) — diag(box) /



Hyperplane Neighborhoods, a Warmup
Dumitrescu and Téth, SODA '13: a 2°(9)_approximation

Analysis Linear Program:

o :

1 So .

AR : min(x2 — x1) + (y2 — 1)
\~ 1

' .. : st. x1 < x

1 \s 1

' .. ' i<y

1 ~ 1 —

! S 1

1 So 1 [

1 ~ 1

1 1

! 1

! 1

! 1

1

cost(ALG) < pe.rim(box) c 20(d) ;
cost(OPT) — diag(box) /

Note: LP has constantly many
variables — strongly polynomial
linear time (Megiddo '84, Chan l;



Idea for PTAS

Observation: Tour T is feasible < conv(T) intersects all input
hyperplanes.



Idea for PTAS

Observation: Tour T is feasible < conv(T) intersects all input

hyperplanes.
=



Idea for PTAS

Observation: Tour T is feasible < conv(T) intersects all input

hyperplanes.
=




Idea for PTAS

Observation: Tour T is feasible < conv(T) intersects all input

hyperplanes.
= =




Idea for PTAS

Observation: Tour T is feasible < conv(T) intersects all input

hyperplanes.
= =




Idea for PTAS

Observation: Tour T is feasible < conv(T) intersects all input

hyperplanes.
= =




Idea for PTAS

Observation: Tour T is feasible < conv(T) intersects all input

hyperplanes.
= =




Idea for PTAS

Observation: Tour T is feasible < conv(T) intersects all input

hyperplanes.
= =

Shortest tour visiting all vertices in conv(OPT) is again optimal!



Roadmap for PTAS

» Define polytopes whose complexity is bounded by a function
of € (and d).



Roadmap for PTAS

» Define polytopes whose complexity is bounded by a function
of € (and d).

» Show that there is a (1 + €)-approximation to OPT with a
convex hull of bounded complexity.



Roadmap for PTAS

» Define polytopes whose complexity is bounded by a function
of € (and d).

» Show that there is a (1 + €)-approximation to OPT with a
convex hull of bounded complexity.

» Use a linear program to find the “best” tour/polytope of
bounded complexity.



Bounded Complexity Polytopes

Oo—COC—~COC—C0C—-O0
O O O O C
g(€)
O O O O cC
© O O O O

O
©
©
©
O




Bounded Complexity Polytopes

O—@ @ O—0O
® O O O cC

g(e)
O O O e
©O @ O O O
O—COCO—@ @ O




Bounded Complexity Polytopes

g(e)

=] 5 = = £ DA



Bounded Complexity Polytopes

Scale &

Translate

=] 5 = = £ DA



Bounded Complexity Polytopes suffice

Idea: Find a polytope P of bounded complexity so that
P 2 conv(OPT) and tsp(vertices(P))< (1 + €)- cost(OPT).

Two steps:

» Sparcification Find an intermediate polytope P’ so that
P’ D conv(OPT), tsp(vertices(P'))< (1 + €¢')- cost(OPT), and
P’ has O, 4(1) many vertices.

» Snapping: Snap P’ to the grid to obtain P, while increasing
the tour length by at most another (1 + €”)-factor.



Sparcification

Theorem (Chan '06)

Given an m-point set in RY one can construct an e-core-set of size
0(1/(9=1)/2) for the extent measure.



Sparcification

Theorem (Chan '06)

Given an m-point set in RY one can construct an e-core-set of size
0(1/(9=1)/2) for the extent measure.



Sparcification

Theorem (Chan '06)

Given an m-point set in RY one can construct an e-core-set of size
0(1/(9=1)/2) for the extent measure.



Sparcification

Theorem (Chan '06)

Given an m-point set in RY, one can construct an e-core-set of size
0(1/(9=1/2) for the extent measure.



Sparcifying

Theorem
Theorem (Ball '92) Let P be a convex polytope. If the volume-wise
largest ellipsoid contained in P is B(0,1), then P € B(0, d).



Sparcifying

Theorem

Theorem (Ball '92) Let P be a convex polytope. If the volume-wise
largest ellipsoid contained in P is B(0, 1), then P € B(0, d).




Sparcifying

Theorem
Theorem We can select O 4(1) many vertices of OPT such that
their convex hull scaled by a factor (1 + €’) contains OPT.



Snapping

«O> < Fr «=>»

«=>

Q>



S"aPping

(O @ 4=>

<E>»

o



Snapping

it
i
v

Q>



Snapping

=] 5 = = E DA



Snapping




Snapping




Snapping

) >g(e) L' Note: 1 < cost(OPT)




Snapping

) >g(e) L' Note: 1 < cost(OPT)
We have:
> PO P
» Detour cost:
e-cost(OPT), for
suitable g(e).
» P is of bounded
complexity.




Another Linear Program

Linear Program

“Guessing” > translation parameter p

) » scaling parameter \
» The vertices of the polytope gp

» The order ¢ in which the
tour (of length ¢(o)) visits
the vertices



Another Linear Program

Linear Program

“Guessing” > translation parameter p

) » scaling parameter \
» The vertices of the polytope gp

» The order ¢ in which the
tour (of length ¢(o)) visits
the vertices

Note: For fixed vertices and o,
the tour length depends only on
the scaling parameter \.



Another Linear Program

Linear Program

“Guessing” > translation parameter p

) » scaling parameter \
» The vertices of the polytope gp

» The order o in which the

tour (of length ¢(c)) visits min A - (o)
the vertices s.t.
A>1

Note: For fixed vertices and o, ;
the tour length depends only on peR
the scaling parameter \.



Another Linear Program
Linear Program

> translation parameter g

“Guessing” » scaling parameter A
» Th i f th |
e vertices of the polytope min A - £(0)
» The order o in which the ;
tour (of length ¢(o)) visits st
the vertices A>1
- d
Note: For fixed vertices and o, pFeER

the tour length depends only on <)\5,'+ —p,ni) >0
the scaling parameter \. (As7 —p,n;) <0



Another Linear Program
Linear Program

> translation parameter g

“Guessing” » scaling parameter A
> Th i f th I
e vertices of the polytope min A - (0
» The order o in which the ;
tour (of length ¢(o)) visits St
the vertices A>1
. . 0 E RY
Note: For fixed vertices and o, P
the tour length depends only on <)\5,'+ —p,ni) >0
the scaling parameter \. (As; —p,ni) <0

LP has (again) constantly many variables — strongly polynomial
linear time (Megiddo '84, Chan '06)



Summing up...

Theorem
TSP with hyperplane neighborhoods admits a PTAS with strongly
polynomial linear running time.



Summing up...

Theorem
TSP with hyperplane neighborhoods admits a PTAS with strongly
polynomial linear running time.

...still the constant is exponential in d and doubly exponential in

1/e.



The d = 2 Case

TSP with hyperplane neighborhoods in d = 2, a.k.a. TSP with
lines in 2d, can be solved exactly in polynomial time through an
elegant reduction to the watchman route problem.



The d = 2 Case

TSP with hyperplane neighborhoods in d = 2, a.k.a. TSP with
lines in 2d, can be solved exactly in polynomial time through an
elegant reduction to the watchman route problem.

The watchman route problem:



The d = 2 Case

TSP with hyperplane neighborhoods in d = 2, a.k.a. TSP with
lines in 2d, can be solved exactly in polynomial time through an
elegant reduction to the watchman route problem.

The watchman route problem:

Given: A simple polygon P.



The d =2 Case
TSP with hyperplane neighborhoods in d = 2, a.k.a. TSP with
lines in 2d, can be solved exactly in polynomial time through an
elegant reduction to the watchman route problem.
The watchman route problem:

Given: A simple polygon P.
Output: A tour of minimal length, which
» remains in the interior of P, and
> ‘“sees’ every point p € P.



The d =2 Case
TSP with hyperplane neighborhoods in d = 2, a.k.a. TSP with
lines in 2d, can be solved exactly in polynomial time through an
elegant reduction to the watchman route problem.
The watchman route problem:

Given: A simple polygon P.
Output: A tour of minimal length, which
» remains in the interior of P, and
> ‘“sees’ every point p € P.



A reduction to watchman route



A reduction to watchman route

» Take convex hull of
intersection points.



A reduction to watchman route

» Take convex hull of
intersection points.

» Form
“sawlike-structure” .



A reduction to watchman route

» Take convex hull of
intersection points.

» Form
“sawlike-structure” .



A reduction to watchman route

» Take convex hull of
intersection points.

» Form
“sawlike-structure” .



A reduction to watchman route

» Take convex hull of
intersection points.
» Form
“sawlike-structure” .
A watchman route is

feasible iff it “touches” all
lines. (Johnsson '02)



A reduction to watchman route

» Take convex hull of
intersection points.

» Form
“sawlike-structure” .

A watchman route is
feasible iff it “touches” all
lines. (Johnsson '02)
The watchman route
problem is solvable in
polynomial-time (Tan '01)



Online Setting



Hyperplane Chasing (Definition)

Input: An initial point pp and a sequence of hyperplanes
Output: A sequence of points, one per hyperplane
Cost: Total moved distance



Hyperplane Chasing (Definition)

Input: An initial point pp and a sequence of hyperplanes
Output: A sequence of points, one per hyperplane
Cost: Total moved distance



Hyperplane Chasing (Definition)

Input: An initial point pp and a sequence of hyperplanes
Output: A sequence of points, one per hyperplane
Cost: Total moved distance



Hyperplane Chasing (Definition)

Input: An initial point pp and a sequence of hyperplanes
Output: A sequence of points, one per hyperplane
Cost: Total moved distance



Hyperplane Chasing (Definition)

Input: An initial point pp and a sequence of hyperplanes
Output: A sequence of points, one per hyperplane
Cost: Total moved distance



Hyperplane Chasing (Definition)

Input: An initial point pp and a sequence of hyperplanes
Output: A sequence of points, one per hyperplane
Cost: Total moved distance



Hyperplane Chasing (Definition)

Input: An initial point pp and a sequence of hyperplanes
Output: A sequence of points, one per hyperplane
Cost: Total moved distance



Line Chasing for d = 2

Simple Algorithms:

Greedy: Move to intersection:
w(1)-competitive w(1)-competitive




Line Chasing for d = 2

Simple Algorithms:

Greedy: Move to intersection:
w(1)-competitive w(1)-competitive




Line Chasing for d = 2

Simple Algorithms:

Greedy: Move to intersection:
w(1)-competitive w(1)-competitive

-




Line Chasing for d = 2

Simple Algorithms:

Greedy: Move to intersection:
w(1)-competitive w(1)-competitive

-




Line Chasing for d = 2

Simple Algorithms:

Greedy: Move to intersection:
w(1)-competitive w(1)-competitive

P




Line Chasing for d = 2

Simple Algorithms:

Greedy: Move to intersection:
w(1)-competitive w(1)-competitive

P




Line Chasing for d = 2

Simple Algorithms:

Greedy: Move to intersection:
w(1)-competitive w(1)-competitive




Line Chasing for d = 2

Simple Algorithms:

Greedy: Move to intersection:
w(1)-competitive w(1)-competitive




Line Chasing for d = 2

Simple Algorithms:

Greedy: Move to intersection:
w(1)-competitive w(1)-competitive




Line Chasing for d = 2

Simple Algorithms:

Greedy: Move to intersection:
w(1)-competitive w(1)-competitive




Line Chasing for d = 2

Simple Algorithms:

Greedy: Move to intersection:
w(1)-competitive w(1)-competitive




Line Chasing for d = 2

Simple Algorithms:

Greedy: Move to intersection:
w(1)-competitive w(1)-competitive




Line Chasing for d = 2

Simple Algorithms:

Greedy: Move to intersection:
w(1)-competitive w(1)-competitive




Line Chasing for d = 2

Simple Algorithms:

Greedy: Move to intersection:
w(1)-competitive w(1)-competitive

——




Line Chasing for d = 2

Simple Algorithms:

Greedy: Move to intersection:
w(1)-competitive w(1)-competitive

—




Line Chasing for d = 2

Simple Algorithms:

Greedy: Move to intersection:
w(1)-competitive w(1)-competitive

o




Line Chasing for d = 2

Simple Algorithms:

Greedy: Move to intersection:
w(1)-competitive w(1)-competitive

T

Theorem (Friedman & Linial '93)

There is a O(1)-competitive algorithm for lines in d = 2.



Simpler O(1)-competitive algorithm (AA et al.'16)

Algorithm:




Simpler O(1)-competitive algorithm (AA et al.'16)

\ Algorithm:
@




Simpler O(1)-competitive algorithm (AA et al.'16)

N

Algorithm:

Move greedily to the next
line, and then the same
distance towards the
intersection (if it exists).



Simpler O(1)-competitive algorithm (AA et al.'16)

Algorithm:
Move greedily to the next

line, and then the same
distance towards the
intersection (if it exists).

Currently best algorithm: 3-competitive (Bienkowski et al. '18)



Convex Body Chasing

» Chasing convex bodies has connectionts to machine learning.



Convex Body Chasing

» Chasing convex bodies has connectionts to machine learning.

» Whether an O(1)-competitive algorithm for chasing convex
bodies exists was a long-standing open problem.



Convex Body Chasing

» Chasing convex bodies has connectionts to machine learning.

» Whether an O(1)-competitive algorithm for chasing convex
bodies exists was a long-standing open problem.

» Solved by Bubeck, Lee, Li, Sellke, STOC '19.



Convex Body Chasing

» Chasing convex bodies has connectionts to machine learning.

» Whether an O(1)-competitive algorithm for chasing convex
bodies exists was a long-standing open problem.

» Solved by Bubeck, Lee, Li, Sellke, STOC '19.

» Simplified by Sellke & Argue, Gupta, Guruganesh and Tang,
May '19



Future directions

What about:
» |Is TSP with hyperplane neighborhoods NP-hard?
» Input hyperplanes have to be visited in a given order. Similar
technique may work...
» Input is a set of lower dimensional affine subspaces. New
techniques required...
» Best possible running time for d = 27



Thanks!



