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Computational Complexity: TSP .vs. TSPN

TSP TSPN
: NP-hard NP-hard
exact solution P’ao‘%adimitlraic_)lyA'sﬁ 5 Papadimi(‘jcriou g%'AS
C mits oes not admit
approximation Arora/Mitchell '96 | Gudmunsson & Levcopoulos '00

Definition
A polynomial-time algorithm ALG is called an «-approximation
algorithm if cost(ALG,/)< a-cost(OPT,/) for all instances /

Definition
A PTAS is a family of algorithms {ALG}.~o such that for each
€ >0, ALG, is a (1 + €)-approximation algorithm.
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Hyperplane Neighborhoods, a Warmup
Dumitrescu and Téth, SODA '13: a 2°(9)_approximation

Analysis Linear Program:

o :

1 So .

AR : min(x2 — x1) + (y2 — 1)
\~ 1

' .. : st. x1 < x

1 \s 1

' .. ' i<y

1 ~ 1 —
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cost(ALG) < pe.rim(box) c 20(d) ;
cost(OPT) — diag(box) /

Note: LP has constantly many
variables — strongly polynomial
linear time (Megiddo '84, Chan l;
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Idea for PTAS

Observation: Tour T is feasible < conv(T) intersects all input

hyperplanes.
= =

Shortest tour visiting all vertices in conv(OPT) is again optimal!
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Roadmap for PTAS

» Define polytopes whose complexity is bounded by a function
of € (and d).

» Show that there is a (1 + €)-approximation to OPT with a
convex hull of bounded complexity.

» Use a linear program to find the “best” tour/polytope of
bounded complexity.
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Bounded Complexity Polytopes suffice

Idea: Find a polytope P of bounded complexity so that
P 2 conv(OPT) and tsp(vertices(P))< (1 + €)- cost(OPT).

Two steps:

» Sparcification Find an intermediate polytope P’ so that
P’ D conv(OPT), tsp(vertices(P'))< (1 + €¢')- cost(OPT), and
P’ has O, 4(1) many vertices.

» Snapping: Snap P’ to the grid to obtain P, while increasing
the tour length by at most another (1 + €”)-factor.
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Sparcifying

Theorem
Theorem We can select O 4(1) many vertices of OPT such that
their convex hull scaled by a factor (1 + €’) contains OPT.
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Snapping

) >g(e) L' Note: 1 < cost(OPT)




Snapping

) >g(e) L' Note: 1 < cost(OPT)
We have:
> PO P
» Detour cost:
e-cost(OPT), for
suitable g(e).
» P is of bounded
complexity.
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Another Linear Program
Linear Program

> translation parameter g

“Guessing” » scaling parameter A
> Th i f th I
e vertices of the polytope min A - (0
» The order o in which the ;
tour (of length ¢(o)) visits St
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. . 0 E RY
Note: For fixed vertices and o, P
the tour length depends only on <)\5,'+ —p,ni) >0
the scaling parameter \. (As; —p,ni) <0

LP has (again) constantly many variables — strongly polynomial
linear time (Megiddo '84, Chan '06)
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Summing up...

Theorem
TSP with hyperplane neighborhoods admits a PTAS with strongly
polynomial linear running time.

...still the constant is exponential in d and doubly exponential in

1/e.
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A reduction to watchman route

» Take convex hull of
intersection points.

» Form
“sawlike-structure” .

A watchman route is
feasible iff it “touches” all
lines. (Johnsson '02)
The watchman route
problem is solvable in
polynomial-time (Tan '01)



Online Setting
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Line Chasing for d = 2

Simple Algorithms:

Greedy: Move to intersection:
w(1)-competitive w(1)-competitive

T

Theorem (Friedman & Linial '93)

There is a O(1)-competitive algorithm for lines in d = 2.
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Algorithm:

Move greedily to the next
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Simpler O(1)-competitive algorithm (AA et al.'16)

Algorithm:
Move greedily to the next

line, and then the same
distance towards the
intersection (if it exists).

Currently best algorithm: 3-competitive (Bienkowski et al. '18)
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Convex Body Chasing

» Chasing convex bodies has connectionts to machine learning.

» Whether an O(1)-competitive algorithm for chasing convex
bodies exists was a long-standing open problem.

» Solved by Bubeck, Lee, Li, Sellke, STOC '19.

» Simplified by Sellke & Argue, Gupta, Guruganesh and Tang,
May '19



Future directions

What about:
» |Is TSP with hyperplane neighborhoods NP-hard?
» Input hyperplanes have to be visited in a given order. Similar
technique may work...
» Input is a set of lower dimensional affine subspaces. New
techniques required...
» Best possible running time for d = 27



Thanks!



