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Computational Complexity: TSP .vs. TSPN

TSP TSPN

exact solution NP-hard
Papadimitriou ’77

NP-hard
Papadimitriou ’77

approximation Admits PTAS
Arora/Mitchell ’96

Does not admit PTAS
Gudmunsson & Levcopoulos ’00

Definition
A polynomial-time algorithm ALG is called an α-approximation
algorithm if cost(ALG,I )≤ α·cost(OPT,I ) for all instances I

Definition
A PTAS is a family of algorithms {ALGε}ε>0 such that for each
ε > 0, ALGε is a (1 + ε)-approximation algorithm.



Versions of TSPN

regions lower bound upper bound
k points (Group TSP)

in d = 2
no const. apx.

Safra & Schwarz ’03
k = 2, d = 2 no PTAS

Dror & Orlin ’03
polygons in d = 2 no PTAS

de Berg et al. ’02
conv. polytopes

fixed d
NP-hard

Papadimitriou ’77
Open Problem:
NP-hard? PTAS?

hyperplanes
fixed d

Open Problem:
NP-hard?

PTAS
AA et al. ’19

lines d = 2 - ∈ P
Johnsson, ’02

lines d = 3 NP-hard
Papadimitriou ’77

log3 n-apx.
Dumitrescu& Tóth ’13
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Hyperplane Neighborhoods, a Warmup

Dumitrescu and Tóth, SODA ’13: a 2Θ(d)-approximation

`i Linear Program:

min(x2 − x1) + (y2 − y1)

s.t. x1 ≤ x2

y1 ≤ y2

〈 ~s+
i − ~pi , ~ni 〉 ≥ 0

〈 ~s−i − ~pi , ~ni 〉 ≤ 0
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Roadmap for PTAS

I Define polytopes whose complexity is bounded by a function
of ε (and d).

I Show that there is a (1 + ε)-approximation to OPT with a
convex hull of bounded complexity.

I Use a linear program to find the “best” tour/polytope of
bounded complexity.
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Bounded Complexity Polytopes

g(ε) Scale &
Translate



Bounded Complexity Polytopes suffice

Idea: Find a polytope P of bounded complexity so that
P ⊇ conv(OPT) and tsp(vertices(P))≤ (1 + ε)· cost(OPT).

Two steps:

I Sparcification Find an intermediate polytope P ′ so that
P ′ ⊇ conv(OPT), tsp(vertices(P’))≤ (1 + ε′)· cost(OPT), and
P ′ has Oε,d(1) many vertices.

I Snapping: Snap P ′ to the grid to obtain P, while increasing
the tour length by at most another (1 + ε′′)-factor.



Sparcification

Theorem (Chan ’06)

Given an m-point set in Rd , one can construct an ε-core-set of size
O(1/ε(d−1)/2) for the extent measure.
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Sparcifying

Theorem
Theorem (Ball ’92) Let P be a convex polytope. If the volume-wise
largest ellipsoid contained in P is B(0, 1), then P ∈ B(0, d).

1
d
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Sparcifying

Theorem
Theorem We can select Oε,d(1) many vertices of OPT such that
their convex hull scaled by a factor (1 + ε′) contains OPT.



Snapping

Note: L ≤ cost(OPT)
We have:

I P ⊇ P ′

I Detour cost:
Oε(1)·2O(d) ·g(ε)·L ≤
ε·cost(OPT), for
suitable g(ε).

I P is of bounded
complexity.
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Another Linear Program

“Guessing”

I The vertices of the polytope

I The order σ in which the
tour (of length `(σ)) visits
the vertices

Note: For fixed vertices and σ,
the tour length depends only on
the scaling parameter λ.

Linear Program

I translation parameter ~ρ

I scaling parameter λ

minλ · `(σ)

s.t.

λ > 1

~ρ ∈ Rd

LP has (again) constantly many variables → strongly polynomial
linear time (Megiddo ’84, Chan ’06)
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The d = 2 Case
TSP with hyperplane neighborhoods in d = 2, a.k.a. TSP with
lines in 2d , can be solved exactly in polynomial time through an
elegant reduction to the watchman route problem.

The watchman route problem:

Given: A simple polygon P.
Output: A tour of minimal length, which

I remains in the interior of P, and

I “sees” every point p ∈ P.
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A reduction to watchman route

I Take convex hull of
intersection points.

I Form
“sawlike-structure”.

A watchman route is
feasible iff it “touches” all
lines. (Johnsson ’02)
The watchman route
problem is solvable in
polynomial-time (Tan ’01)
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Online Setting
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Line Chasing for d = 2

Simple Algorithms:

Greedy:
ω(1)-competitive

Move to intersection:
ω(1)-competitive

Theorem (Friedman & Linial ’93)

There is a O(1)-competitive algorithm for lines in d = 2.
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Simpler O(1)-competitive algorithm (AA et al.’16)

Algorithm:

Move greedily to the next
line, and then the same
distance towards the
intersection (if it exists).

Currently best algorithm: 3-competitive (Bienkowski et al. ’18)
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Convex Body Chasing

I Chasing convex bodies has connectionts to machine learning.

I Whether an O(1)-competitive algorithm for chasing convex
bodies exists was a long-standing open problem.

I Solved by Bubeck, Lee, Li, Sellke, STOC ’19.

I Simplified by Sellke & Argue, Gupta, Guruganesh and Tang,
May ’19
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Future directions

What about:

I Is TSP with hyperplane neighborhoods NP-hard?

I Input hyperplanes have to be visited in a given order. Similar
technique may work...

I Input is a set of lower dimensional affine subspaces. New
techniques required...

I Best possible running time for d = 2?



Thanks!


