On the Travelling Salesperson Problem with Neighborhoods

Antonios Antoniadis

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Travelling Salesperson Problem (TSP)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Input: A set of *n* points.

Travelling Salesperson Problem (TSP)

Input: A set of *n* points.

Output: A tour of minimum total length that visits all the points.

・ロト ・ 同ト ・ ヨト ・ ヨト

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

Output: A tour of minimum total length that visits all the regions.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Computational Complexity: TSP .vs. TSPN

	TSP	TSPN
exact solution	NP-hard Papadimitriou '77	NP-hard Papadimitriou '77
approximation	Admits PTAS Arora/Mitchell '96	Does not admit PTAS Gudmunsson & Levcopoulos '00

Definition

A polynomial-time algorithm ALG is called an α -approximation algorithm if cost(ALG,I) $\leq \alpha \cdot cost(OPT,I)$ for all instances I

Definition

A PTAS is a family of algorithms $\{ALG_{\epsilon}\}_{\epsilon>0}$ such that for each $\epsilon > 0$, ALG_{ϵ} is a $(1 + \epsilon)$ -approximation algorithm.

Versions of TSPN

regions	lower bound	upper bound
k points (Group TSP)	no const. apx.	
in $d = 2$	Safra & Schwarz '03	
k = 2, d = 2	no PTAS Dror & Orlin '03	
polygons in $d = 2$	no PTAS de Berg et al. '02	
conv. polytopes	NP-hard	Open Problem:
fixed d	Papadimitriou '77	NP-hard? PTAS?
hyperplanes	Open Problem:	PTAS
fixed d	NP-hard?	AA et al. '19
lines $d = 2$	-	∈ P Johnsson, '02
lines $d = 3$	NP-hard Papadimitriou '77	log ³ <i>n</i> -apx. Dumitrescu& Tóth '13

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Versions of TSPN

regions	lower bound	upper bound
k points (Group TSP)	no const. apx.	
in $d = 2$	Safra & Schwarz '03	
k = 2, d = 2	no PTAS Dror & Orlin '03	
polygons in $d = 2$	no PTAS de Berg et al. '02	
conv. polytopes	NP-hard	Open Problem:
fixed d	Papadimitriou '77	NP-hard? PTAS?
hyperplanes	Open Problem:	PTAS
fixed d	NP-hard?	AA et al. '19
lines $d = 2$	-	∈ P Johnsson, '02
lines $d = 3$	NP-hard Papadimitriou '77	log ³ <i>n</i> -apx. Dumitrescu& Tóth '13

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Dumitrescu and Tóth, SODA '13: a $2^{\Theta(d)}$ -approximation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Dumitrescu and Tóth, SODA '13: a $2^{\Theta(d)}$ -approximation

 $\min(x_2 - x_1) + (y_2 - y_1)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

s.t.
$$x_1 \leq x_2$$

 $y_1 \leq y_2$

Dumitrescu and Tóth, SODA '13: a $2^{\Theta(d)}$ -approximation

Linear Program:

$$min(x_2 - x_1) + (y_2 - y_1)$$

s.t. $x_1 \le x_2$
 $y_1 \le y_2$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Dumitrescu and Tóth, SODA '13: a $2^{\Theta(d)}$ -approximation

Linear Program:

$$\min(x_2 - x_1) + (y_2 - y_1)$$

s.t. $x_1 \le x_2$
 $y_1 \le y_2$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$\min(x_2 - x_1) + (y_2 - y_1)$$
s.t. $x_1 \le x_2$
 $y_1 \le y_2$

$$\min(x_2 - x_1) + (y_2 - y_1)$$
s.t. $x_1 \le x_2$
 $y_1 \le y_2$

$$\min(x_2 - x_1) + (y_2 - y_1)$$

s.t. $x_1 \le x_2$
 $y_1 \le y_2$

$$\min(x_2 - x_1) + (y_2 - y_1)$$

s.t. $x_1 \le x_2$
 $y_1 \le y_2$

Linear Program:

$$\begin{split} \min(x_2 - x_1) + (y_2 - y_1) \\ \text{s.t.} \quad x_1 \leq x_2 \\ y_1 \leq y_2 \\ \langle \vec{s_i^+} - \vec{p_i, n_i} \rangle \geq 0 \\ \langle \vec{s_i^-} - \vec{p_i, n_i} \rangle \leq 0 \end{split}$$

Hyperplane Neighborhoods, a Warmup
Dumitrescu and Tóth, SODA '13: a $2^{\Theta(d)}$ -approximation
AnalysisAnalysisLinear Program:

$$\begin{split} \min(x_2 - x_1) + (y_2 - y_1) \\ \text{s.t.} \quad x_1 \leq x_2 \\ y_1 \leq y_2 \\ \langle \vec{s_i^+} - \vec{p_i, n_i} \rangle \geq 0 \\ \langle \vec{s_i^-} - \vec{p_i, n_i} \rangle \leq 0 \end{split}$$

Dumitrescu and Tóth, SODA '13: a $2^{\Theta(d)}$ -approximation

Linear Program:

$$\begin{split} \min(x_2 - x_1) + (y_2 - y_1) \\ \text{s.t.} \quad x_1 \leq x_2 \\ y_1 \leq y_2 \\ \langle \vec{s_i^+} - \vec{p_i, n_i} \rangle \geq 0 \\ \langle \vec{s_i^-} - \vec{p_i, n_i} \rangle \leq 0 \end{split}$$

Dumitrescu and Tóth, SODA '13: a $2^{\Theta(d)}$ -approximation

Linear Program:

 $\begin{aligned} \min(x_2 - x_1) + (y_2 - y_1) \\ \text{s.t.} \quad x_1 \leq x_2 \\ y_1 \leq y_2 \\ \langle \vec{s_i^+} - \vec{p_i, n_i} \rangle \geq 0 \\ \langle \vec{s_i^-} - \vec{p_i, n_i} \rangle \leq 0 \end{aligned}$

Dumitrescu and Tóth, SODA '13: a $2^{\Theta(d)}$ -approximation

Linear Program:

 $\min(x_2 - x_1) + (y_2 - y_1)$ s.t. $x_1 \le x_2$ $y_1 \le y_2$ $\langle \vec{s_i^+} - \vec{p_i, n_i} \rangle \ge 0$ $\langle \vec{s_i^-} - \vec{p_i, n_i} \rangle \le 0$

Dumitrescu and Tóth, SODA '13: a $2^{\Theta(d)}$ -approximation

Linear Program:

$$\begin{split} \min(x_2 - x_1) + (y_2 - y_1) \\ \text{s.t.} \quad x_1 \le x_2 \\ y_1 \le y_2 \\ \langle \vec{s_i^+} - \vec{p_i, n_i} \rangle \ge 0 \\ \langle \vec{s_i^-} - \vec{p_i, n_i} \rangle \le 0 \end{split}$$

$$\frac{\mathsf{cost}(\mathsf{ALG})}{\mathsf{cost}(\mathsf{OPT})} \leq \frac{\mathsf{perim}(\mathsf{box})}{\mathsf{diag}(\mathsf{box})} \in 2^{O(d)}$$

Dumitrescu and Tóth, SODA '13: a $2^{\Theta(d)}$ -approximation

Linear Program:

$$\begin{split} \min(x_2 - x_1) + (y_2 - y_1) \\ \text{s.t.} \quad x_1 \leq x_2 \\ y_1 \leq y_2 \\ \langle \vec{s_i^+} - \vec{p_i, n_i} \rangle \geq 0 \\ \langle \vec{s_i^-} - \vec{p_i, n_i} \rangle \leq 0 \end{split}$$

 $\frac{\mathsf{cost}(\mathsf{ALG})}{\mathsf{cost}(\mathsf{OPT})} \leq \frac{\mathsf{perim}(\mathsf{box})}{\mathsf{diag}(\mathsf{box})} \in 2^{\mathcal{O}(d)}$

Note: LP has constantly many variables \rightarrow strongly polynomial linear time (Megiddo '84, Chan

Observation: Tour T is feasible \Leftrightarrow conv(T) intersects all input hyperplanes.

(ロ)、(型)、(E)、(E)、 E) の(()

Roadmap for PTAS

Define polytopes whose complexity is bounded by a function of e (and d).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Roadmap for PTAS

- Define polytopes whose complexity is bounded by a function of e (and d).
- Show that there is a (1 + ϵ)-approximation to OPT with a convex hull of bounded complexity.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Roadmap for PTAS

- Define polytopes whose complexity is bounded by a function of e (and d).
- Show that there is a (1 + ϵ)-approximation to OPT with a convex hull of bounded complexity.
- Use a linear program to find the "best" tour/polytope of bounded complexity.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Bounded Complexity Polytopes

イロト イヨト イヨト

Bounded Complexity Polytopes

Bounded Complexity Polytopes

<ロト <回ト < 回ト < 回ト

æ

Bounded Complexity Polytopes

Scale & Translate

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

ж

Bounded Complexity Polytopes suffice

Idea: Find a polytope *P* of bounded complexity so that $P \supseteq \operatorname{conv}(\mathsf{OPT})$ and $\operatorname{tsp}(\operatorname{vertices}(\mathsf{P})) \le (1 + \epsilon) \cdot \operatorname{cost}(\mathsf{OPT})$.

Two steps:

- ▶ Sparcification Find an intermediate polytope P' so that $P' \supseteq \operatorname{conv}(\operatorname{OPT})$, $\operatorname{tsp}(\operatorname{vertices}(\mathsf{P}')) \le (1 + \epsilon') \cdot \operatorname{cost}(\operatorname{OPT})$, and P' has $O_{\epsilon,d}(1)$ many vertices.
- Snapping: Snap P' to the grid to obtain P, while increasing the tour length by at most another $(1 + \epsilon'')$ -factor.

Theorem (Chan '06)

Given an m-point set in \mathbb{R}^d , one can construct an ϵ -core-set of size $O(1/\epsilon^{(d-1)/2})$ for the extent measure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (Chan '06)

Given an m-point set in \mathbb{R}^d , one can construct an ϵ -core-set of size $O(1/\epsilon^{(d-1)/2})$ for the extent measure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (Chan '06)

Given an m-point set in \mathbb{R}^d , one can construct an ϵ -core-set of size $O(1/\epsilon^{(d-1)/2})$ for the extent measure.

Theorem (Chan '06)

Given an m-point set in \mathbb{R}^d , one can construct an ϵ -core-set of size $O(1/\epsilon^{(d-1)/2})$ for the extent measure.

Sparcifying

Theorem

Theorem (Ball '92) Let P be a convex polytope. If the volume-wise largest ellipsoid contained in P is B(0,1), then $P \in B(0,d)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Sparcifying

Theorem

Theorem (Ball '92) Let P be a convex polytope. If the volume-wise largest ellipsoid contained in P is B(0,1), then $P \in B(0,d)$.

Sparcifying

Theorem

Theorem We can select $O_{\epsilon,d}(1)$ many vertices of OPT such that their convex hull scaled by a factor $(1 + \epsilon')$ contains OPT.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

L

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Note: $L \leq cost(OPT)$ We have:

$\blacktriangleright P \supseteq P'$

▶ Detour cost: $O_{\epsilon}(1) \cdot 2^{O(d)} \cdot g(\epsilon) \cdot L \leq \epsilon \cdot \text{cost}(\mathsf{OPT}), \text{ for suitable } g(\epsilon).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

P is of bounded complexity.

"Guessing"

- The vertices of the polytope
- The order σ in which the tour (of length ℓ(σ)) visits the vertices

Linear Program

• translation parameter $\vec{\rho}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 \blacktriangleright scaling parameter λ

"Guessing"

- The vertices of the polytope
- The order σ in which the tour (of length ℓ(σ)) visits the vertices

Note: For fixed vertices and σ , the tour length depends only on the scaling parameter λ .

Linear Program

• translation parameter $\vec{\rho}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 \blacktriangleright scaling parameter λ

"Guessing"

- The vertices of the polytope
- The order σ in which the tour (of length ℓ(σ)) visits the vertices

Note: For fixed vertices and σ , the tour length depends only on the scaling parameter λ .

Linear Program

- translation parameter $\vec{\rho}$
- \blacktriangleright scaling parameter λ

 $\min \lambda \cdot \ell(\sigma)$ s.t. $\lambda > 1$ $\vec{\rho} \in \mathbb{R}^d$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

"Guessing"

- The vertices of the polytope
- The order σ in which the tour (of length ℓ(σ)) visits the vertices

Note: For fixed vertices and σ , the tour length depends only on the scaling parameter λ .

Linear Program

- translation parameter $\vec{
 ho}$
- \blacktriangleright scaling parameter λ

```
\begin{split} \min \lambda \cdot \ell(\sigma) \\ s.t. \\ \lambda > 1 \\ \vec{\rho} \in \mathbb{R}^{d} \\ \langle \lambda s_{i}^{+} - \rho, n_{i} \rangle \geq 0 \\ \langle \lambda s_{i}^{-} - \rho, n_{i} \rangle \leq 0 \end{split}
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

"Guessing"

- The vertices of the polytope
- The order σ in which the tour (of length ℓ(σ)) visits the vertices

Note: For fixed vertices and σ , the tour length depends only on the scaling parameter λ .

Linear Program

- translation parameter $\vec{
 ho}$
- \blacktriangleright scaling parameter λ

$$\begin{split} \min \lambda \cdot \ell(\sigma) \\ s.t. \\ \lambda > 1 \\ \vec{\rho} \in \mathbb{R}^{d} \\ \langle \lambda s_{i}^{+} - \rho, n_{i} \rangle \geq 0 \\ \langle \lambda s_{i}^{-} - \rho, n_{i} \rangle \leq 0 \end{split}$$

LP has (again) constantly many variables \rightarrow strongly polynomial linear time (Megiddo '84, Chan '06)

Summing up...

Theorem

TSP with hyperplane neighborhoods admits a PTAS with strongly polynomial linear running time.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Summing up...

Theorem

TSP with hyperplane neighborhoods admits a PTAS with strongly polynomial linear running time.

...still the constant is exponential in d and doubly exponential in $1/\epsilon.$

TSP with hyperplane neighborhoods in d = 2, a.k.a. TSP with lines in 2*d*, can be solved exactly in polynomial time through an elegant reduction to the watchman route problem.

TSP with hyperplane neighborhoods in d = 2, a.k.a. TSP with lines in 2*d*, can be solved exactly in polynomial time through an elegant reduction to the watchman route problem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The watchman route problem:

TSP with hyperplane neighborhoods in d = 2, a.k.a. TSP with lines in 2*d*, can be solved exactly in polynomial time through an elegant reduction to the watchman route problem.

The watchman route problem:

Given: A simple polygon P.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

TSP with hyperplane neighborhoods in d = 2, a.k.a. TSP with lines in 2*d*, can be solved exactly in polynomial time through an elegant reduction to the watchman route problem.

The watchman route problem:

Given: A simple polygon P.

Output: A tour of minimal length, which

- remains in the interior of P, and
- "sees" every point $p \in P$.

TSP with hyperplane neighborhoods in d = 2, a.k.a. TSP with lines in 2*d*, can be solved exactly in polynomial time through an elegant reduction to the watchman route problem.

The watchman route problem:

Given: A simple polygon P.

Output: A tour of minimal length, which

- remains in the interior of P, and
- "sees" every point $p \in P$.

 Take convex hull of intersection points.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Take convex hull of intersection points.
- Form "sawlike-structure".

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Take convex hull of intersection points.
- Form "sawlike-structure".

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Take convex hull of intersection points.
- Form "sawlike-structure".

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで
A reduction to watchman route

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Online Setting

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Input: An initial point p_0 and a sequence of hyperplanes **Output:** A sequence of points, one per hyperplane **Cost:** Total moved distance

Input: An initial point p_0 and a sequence of hyperplanes **Output:** A sequence of points, one per hyperplane **Cost:** Total moved distance

Input: An initial point p_0 and a sequence of hyperplanes **Output:** A sequence of points, one per hyperplane **Cost:** Total moved distance

Input: An initial point p_0 and a sequence of hyperplanes **Output:** A sequence of points, one per hyperplane **Cost:** Total moved distance

Input: An initial point p_0 and a sequence of hyperplanes **Output:** A sequence of points, one per hyperplane **Cost:** Total moved distance

Input: An initial point p_0 and a sequence of hyperplanes **Output:** A sequence of points, one per hyperplane **Cost:** Total moved distance

Input: An initial point p_0 and a sequence of hyperplanes **Output:** A sequence of points, one per hyperplane **Cost:** Total moved distance

Simple Algorithms:

Greedy: $\omega(1)$ -competitive

Move to intersection: $\omega(1)$ -competitive

Simple Algorithms:

Greedy: $\omega(1)$ -competitive

Move to intersection: $\omega(1)$ -competitive

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Simple Algorithms:

Greedy: $\omega(1)$ -competitive

Move to intersection: $\omega(1)$ -competitive

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Simple Algorithms:

Greedy: $\omega(1)$ -competitive

Move to intersection: $\omega(1)$ -competitive

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Simple Algorithms:

Greedy: $\omega(1)$ -competitive

Move to intersection: $\omega(1)$ -competitive

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Simple Algorithms:

Greedy: $\omega(1)$ -competitive

Move to intersection: $\omega(1)$ -competitive

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Simple Algorithms:

Greedy: $\omega(1)$ -competitive

Move to intersection: $\omega(1)$ -competitive

Simple Algorithms:

Greedy: $\omega(1)$ -competitive

Move to intersection: $\omega(1)$ -competitive

Simple Algorithms:

Greedy: $\omega(1)$ -competitive

Move to intersection: $\omega(1)$ -competitive

Simple Algorithms:

Greedy: $\omega(1)$ -competitive

Move to intersection: $\omega(1)$ -competitive

Simple Algorithms:

Greedy: $\omega(1)$ -competitive

Move to intersection: $\omega(1)$ -competitive

Simple Algorithms:

Greedy: $\omega(1)$ -competitive

Move to intersection: $\omega(1)$ -competitive

Simple Algorithms:

Greedy: $\omega(1)$ -competitive

Move to intersection: $\omega(1)$ -competitive

Simple Algorithms:

Greedy: $\omega(1)$ -competitive

Move to intersection: $\omega(1)$ -competitive

Simple Algorithms:

Greedy: $\omega(1)$ -competitive

Move to intersection: $\omega(1)$ -competitive

Simple Algorithms:

Greedy: $\omega(1)$ -competitive

Move to intersection: $\omega(1)$ -competitive

Simple Algorithms:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem (Friedman & Linial '93)

There is a O(1)-competitive algorithm for lines in d = 2.

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

Algorithm:

Move greedily to the next line, and then the same distance towards the intersection (if it exists).

Algorithm:

Move greedily to the next line, and then the same distance towards the intersection (if it exists).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Currently best algorithm: 3-competitive (Bienkowski et al. '18)

Chasing convex bodies has connectionts to machine learning.

Chasing convex bodies has connectionts to machine learning.
Whether an O(1)-competitive algorithm for chasing convex bodies exists was a long-standing open problem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Chasing convex bodies has connectionts to machine learning.
- Whether an O(1)-competitive algorithm for chasing convex bodies exists was a long-standing open problem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Solved by Bubeck, Lee, Li, Sellke, STOC '19.

- Chasing convex bodies has connectionts to machine learning.
- Whether an O(1)-competitive algorithm for chasing convex bodies exists was a long-standing open problem.
- Solved by Bubeck, Lee, Li, Sellke, STOC '19.
- Simplified by Sellke & Argue, Gupta, Guruganesh and Tang, May '19

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Future directions

What about:

- Is TSP with hyperplane neighborhoods NP-hard?
- Input hyperplanes have to be visited in a given order. Similar technique may work...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Input is a set of lower dimensional affine subspaces. New techniques required...
- Best possible running time for d = 2?

Thanks!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 りへぐ